micans原中膜相关δ -6脂肪酸去饱和酶的结构分析。

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Journal of Phycology Pub Date : 2025-01-07 DOI:10.1111/jpy.13540
Zhihong Du, Kaiwen Sun, Shangyi Xu, Xiao Qiu
{"title":"micans原中膜相关δ -6脂肪酸去饱和酶的结构分析。","authors":"Zhihong Du, Kaiwen Sun, Shangyi Xu, Xiao Qiu","doi":"10.1111/jpy.13540","DOIUrl":null,"url":null,"abstract":"<p><p>Delta-6 fatty acid desaturases, which play key roles in the biosynthesis of polyunsaturated fatty acids (PUFAs), are membrane-associated enzymes that present significant challenges for isolation and purification, complicating their structural characterization. Here we report the identification and structure-function analysis of a novel Δ6 fatty acid desaturase (PmD6) from the marine alga Prorocentrum micans with substrate preference to α-linolenic acid (18:3n-3). Structural modeling revealed a mushroom-like structure of PmD6 formed by four transmembrane α-helices as a stem and three cytoplasmic domains as a cap. Structural alignment identified several key residues positioned around the substrate tunnel and catalytic center in PmD6. Functional analysis of these residues by site-directed mutagenesis showed that Tyr226, Trp235, Phe345, and Ser349, facing the middle region of the substrate tunnel of PmD6, played critical roles in defining the structure for acceptance of substrates. Thr200, Leu391, and Met389, surrounding the end of the substrate tunnel, had roles in interaction with the methyl end of substrates. Asp255, close to a metal iron in the catalytic center, was essential for catalytic reaction by supporting the regional structure. These results have provided mechanistic insights into the structure-function relationship of membrane-bound front-end fatty acid desaturases.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of a membrane-associated delta-6 fatty acid desaturase from Prorocentrum micans.\",\"authors\":\"Zhihong Du, Kaiwen Sun, Shangyi Xu, Xiao Qiu\",\"doi\":\"10.1111/jpy.13540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delta-6 fatty acid desaturases, which play key roles in the biosynthesis of polyunsaturated fatty acids (PUFAs), are membrane-associated enzymes that present significant challenges for isolation and purification, complicating their structural characterization. Here we report the identification and structure-function analysis of a novel Δ6 fatty acid desaturase (PmD6) from the marine alga Prorocentrum micans with substrate preference to α-linolenic acid (18:3n-3). Structural modeling revealed a mushroom-like structure of PmD6 formed by four transmembrane α-helices as a stem and three cytoplasmic domains as a cap. Structural alignment identified several key residues positioned around the substrate tunnel and catalytic center in PmD6. Functional analysis of these residues by site-directed mutagenesis showed that Tyr226, Trp235, Phe345, and Ser349, facing the middle region of the substrate tunnel of PmD6, played critical roles in defining the structure for acceptance of substrates. Thr200, Leu391, and Met389, surrounding the end of the substrate tunnel, had roles in interaction with the methyl end of substrates. Asp255, close to a metal iron in the catalytic center, was essential for catalytic reaction by supporting the regional structure. These results have provided mechanistic insights into the structure-function relationship of membrane-bound front-end fatty acid desaturases.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.13540\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.13540","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

δ -6脂肪酸去饱和酶在多不饱和脂肪酸(PUFAs)的生物合成中起着关键作用,是一种膜相关酶,在分离和纯化方面存在重大挑战,使其结构表征复杂化。本文报道了一种新型Δ6脂肪酸去饱和酶(PmD6)的鉴定和结构功能分析,该酶来自于底物偏好α-亚麻酸(18:3n-3)的micans原心藻(proorocentrum micans)。结构建模揭示了PmD6的蘑菇状结构,由四个跨膜α-螺旋作为茎,三个细胞质结构域作为帽。结构比对确定了PmD6中位于底物通道和催化中心周围的几个关键残基。通过定点诱变对这些残基的功能分析表明,Tyr226、Trp235、Phe345和Ser349面向PmD6底物通道的中间区域,在确定底物接受的结构中起关键作用。围绕底物通道末端的Thr200、Leu391和Met389与底物的甲基端相互作用。Asp255靠近催化中心的金属铁,通过支持区域结构对催化反应至关重要。这些结果为膜结合前端脂肪酸去饱和酶的结构-功能关系提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural analysis of a membrane-associated delta-6 fatty acid desaturase from Prorocentrum micans.

Delta-6 fatty acid desaturases, which play key roles in the biosynthesis of polyunsaturated fatty acids (PUFAs), are membrane-associated enzymes that present significant challenges for isolation and purification, complicating their structural characterization. Here we report the identification and structure-function analysis of a novel Δ6 fatty acid desaturase (PmD6) from the marine alga Prorocentrum micans with substrate preference to α-linolenic acid (18:3n-3). Structural modeling revealed a mushroom-like structure of PmD6 formed by four transmembrane α-helices as a stem and three cytoplasmic domains as a cap. Structural alignment identified several key residues positioned around the substrate tunnel and catalytic center in PmD6. Functional analysis of these residues by site-directed mutagenesis showed that Tyr226, Trp235, Phe345, and Ser349, facing the middle region of the substrate tunnel of PmD6, played critical roles in defining the structure for acceptance of substrates. Thr200, Leu391, and Met389, surrounding the end of the substrate tunnel, had roles in interaction with the methyl end of substrates. Asp255, close to a metal iron in the catalytic center, was essential for catalytic reaction by supporting the regional structure. These results have provided mechanistic insights into the structure-function relationship of membrane-bound front-end fatty acid desaturases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
期刊最新文献
Exploring cyanobacteria from diverse habitats of the Konkan region of India, unveiling novel species of the genera Desikacharya, Pseudoaliinostoc, and Chlorogloeopsis using a polyphasic approach. Asynchronous shifts in the demographics of two wave-swept kelp species (Laminariales) after nearly four decades. Function of N-acetyltransferase in the biotransformation of aniline in green alga Chlamydomonas reinhardtii. Unraveling the Bryocladia scopulorum complex from the Southwestern Atlantic Ocean with the description of three new species of Bryocladia (Rhodomelaceae, Rhodophyta). Nutritional consistency of macroalgae across a sea ice cover gradient along the Western Antarctic Peninsula.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1