ssDNA适体与极光激酶A蛋白结合的硅片法。

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2025-01-09 DOI:10.1007/7651_2024_596
Haregewoin Bezu Woldekidan, Adugna Abdi Woldesemayat
{"title":"ssDNA适体与极光激酶A蛋白结合的硅片法。","authors":"Haregewoin Bezu Woldekidan, Adugna Abdi Woldesemayat","doi":"10.1007/7651_2024_596","DOIUrl":null,"url":null,"abstract":"<p><p>While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA. The aptamer was designed based on AURKA's structure and nucleic acid sequence, obtained from PDB RCSB. Using RNAfold and RNA composer, we predicted the aptamer's secondary and tertiary structures. Protein-aptamer binding was analyzed via HDOCK and HADDOCK, with 2D interactions visualized in LIGPLOT+ v1.4. Autodock 4 and NAMD 2.3 tools were used to conduct docking and MD simulation studies.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.\",\"authors\":\"Haregewoin Bezu Woldekidan, Adugna Abdi Woldesemayat\",\"doi\":\"10.1007/7651_2024_596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA. The aptamer was designed based on AURKA's structure and nucleic acid sequence, obtained from PDB RCSB. Using RNAfold and RNA composer, we predicted the aptamer's secondary and tertiary structures. Protein-aptamer binding was analyzed via HDOCK and HADDOCK, with 2D interactions visualized in LIGPLOT+ v1.4. Autodock 4 and NAMD 2.3 tools were used to conduct docking and MD simulation studies.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

虽然传统的检测方法在检测特定蛋白质方面面临挑战,但适体以其高特异性和亲和力而闻名,正在成为一种有价值的生物标志物检测工具。极光激酶A (Aurora kinase A, AURKA)在细胞分裂和影响干细胞重编程中起作用。在本研究中,采用计算机方法对随机选择的ssDNA适配体序列及其与AURKA的结合进行了分析。根据AURKA的结构和从PDB RCSB中获得的核酸序列设计适配体。利用RNAfold和RNA composer对适体的二级和三级结构进行了预测。通过HDOCK和HADDOCK分析蛋白质与适体的结合,并在LIGPLOT+ v1.4中可视化二维相互作用。使用Autodock 4和NAMD 2.3工具进行对接和MD仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.

While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA. The aptamer was designed based on AURKA's structure and nucleic acid sequence, obtained from PDB RCSB. Using RNAfold and RNA composer, we predicted the aptamer's secondary and tertiary structures. Protein-aptamer binding was analyzed via HDOCK and HADDOCK, with 2D interactions visualized in LIGPLOT+ v1.4. Autodock 4 and NAMD 2.3 tools were used to conduct docking and MD simulation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
Generation and Characterization of a New Aging Skin Human Dermal Extracellular Matrix Scaffold. A Protocol for Detecting DNA Methylation Changes at CpG Sites of Stemness-Related Genes in Aging Stem Cells. Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer. Reproducible, Scale-Up Production of Human Liver Organoids (HLOs) on a Pillar Plate Platform via Microarray 3D Bioprinting. RNA Interference Approaches to Study Epidermal Cell Adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1