增强界面电荷转移的Ag/Ag2S/ ti3c2tx异质结光催化CO2还原

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-12-30 DOI:10.1039/d4na00969j
Bo Zhang, Yijun Chen, Fei Li, Yang Zhang, Xiang Li, Wuwan Xiong, Weili Dai
{"title":"增强界面电荷转移的Ag/Ag2S/ ti3c2tx异质结光催化CO2还原","authors":"Bo Zhang, Yijun Chen, Fei Li, Yang Zhang, Xiang Li, Wuwan Xiong, Weili Dai","doi":"10.1039/d4na00969j","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic reduction of CO<sub>2</sub> to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons. Herein, Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> heterojunctions were synthesized by depositing Ag/Ag<sub>2</sub>S nanoparticles onto layered Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> substrates using a combination of co-precipitation and photoreduction methods. Fluorescence spectra, UV diffuse reflection, and photoelectric chemical characterizations demonstrated that Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> heterojunctions provided effective channels for the reverse and synergistic migration of electrons and holes, leading to improved spatial separation. Notably, the Ag component in the composite acts as an electron acceptor and reactive center, significantly enhancing the migration ability of photogenerated electrons. The total alcohol yield over Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> (125.3 μmol g<sub>catal.</sub> <sup>-1</sup>) was 5.1 times higher than that on Ag<sub>2</sub>S (24.7 μmol g<sub>catal.</sub> <sup>-1</sup>) and 2.1 times higher than on Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> (60.7 μmol g<sub>catal.</sub> <sup>-1</sup>). This study offers valuable insights into designing efficient photocatalytic CO<sub>2</sub> reduction catalysts.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic CO<sub>2</sub> reduction of Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> heterojunctions with enhanced interfacial charge transfer.\",\"authors\":\"Bo Zhang, Yijun Chen, Fei Li, Yang Zhang, Xiang Li, Wuwan Xiong, Weili Dai\",\"doi\":\"10.1039/d4na00969j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytic reduction of CO<sub>2</sub> to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons. Herein, Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> heterojunctions were synthesized by depositing Ag/Ag<sub>2</sub>S nanoparticles onto layered Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> substrates using a combination of co-precipitation and photoreduction methods. Fluorescence spectra, UV diffuse reflection, and photoelectric chemical characterizations demonstrated that Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> heterojunctions provided effective channels for the reverse and synergistic migration of electrons and holes, leading to improved spatial separation. Notably, the Ag component in the composite acts as an electron acceptor and reactive center, significantly enhancing the migration ability of photogenerated electrons. The total alcohol yield over Ag/Ag<sub>2</sub>S/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> (125.3 μmol g<sub>catal.</sub> <sup>-1</sup>) was 5.1 times higher than that on Ag<sub>2</sub>S (24.7 μmol g<sub>catal.</sub> <sup>-1</sup>) and 2.1 times higher than on Ti<sub>3</sub>C<sub>2</sub>T <sub><i>X</i></sub> (60.7 μmol g<sub>catal.</sub> <sup>-1</sup>). This study offers valuable insights into designing efficient photocatalytic CO<sub>2</sub> reduction catalysts.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4na00969j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00969j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化还原CO2生产有机燃料是解决碳减排和能源短缺问题的一个有前途的策略。过渡金属碳化物(ti3c2tx)由于其独特的层状结构和优异的导电性而受到特别关注。然而,ti3c2tx的实际应用受到光生载流子分离效率差、光生电子迁移能力低等限制。本文采用共沉淀和光还原相结合的方法,在层状ti3c2tx衬底上沉积Ag/Ag2S/ ti3c2tx纳米颗粒,合成了Ag/Ag2S/ ti3c2tx异质结。荧光光谱、紫外漫反射和光电化学表征表明,Ag/Ag2S/ ti3c2tx异质结为电子和空穴的反向和协同迁移提供了有效的通道,从而提高了空间分离。值得注意的是,复合材料中的Ag组分作为电子受体和反应中心,显著增强了光生电子的迁移能力。Ag/Ag2S/Ti3C2T X的总醇得率为125.3 μmol ggal。-1)比Ag2S (24.7 μmol gcatal)高5.1倍。-1),比ti3c2tx (60.7 μmol ggal)高2.1倍。1)。该研究为设计高效的光催化CO2还原催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic CO2 reduction of Ag/Ag2S/Ti3C2T X heterojunctions with enhanced interfacial charge transfer.

Photocatalytic reduction of CO2 to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (Ti3C2T X ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of Ti3C2T X is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons. Herein, Ag/Ag2S/Ti3C2T X heterojunctions were synthesized by depositing Ag/Ag2S nanoparticles onto layered Ti3C2T X substrates using a combination of co-precipitation and photoreduction methods. Fluorescence spectra, UV diffuse reflection, and photoelectric chemical characterizations demonstrated that Ag/Ag2S/Ti3C2T X heterojunctions provided effective channels for the reverse and synergistic migration of electrons and holes, leading to improved spatial separation. Notably, the Ag component in the composite acts as an electron acceptor and reactive center, significantly enhancing the migration ability of photogenerated electrons. The total alcohol yield over Ag/Ag2S/Ti3C2T X (125.3 μmol gcatal. -1) was 5.1 times higher than that on Ag2S (24.7 μmol gcatal. -1) and 2.1 times higher than on Ti3C2T X (60.7 μmol gcatal. -1). This study offers valuable insights into designing efficient photocatalytic CO2 reduction catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Shape-tailored semiconductor dot-in-rods: optimizing CdS-shell growth for enhanced chiroptical properties via the rationalization of the role of temperature and time. Synergetic efficiency: in situ growth of a novel 2D/2D chemically bonded Bi2O3/Cs3Bi2Br9 S-scheme heterostructure for improved photocatalytic performance and stability. Chemical etching of silicon assisted by graphene oxide under negative electric bias. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. Construction of an MXene/MIL Fe-53/ZIF-67 derived bifunctional electrocatalyst for efficient overall water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1