{"title":"碘125对肝细胞癌影响的整合转录组学和蛋白质组学分析。","authors":"Yang Yang, Wei Yang, Jie Shen, Enci Ding","doi":"10.3892/mmr.2025.13431","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (<sup>125</sup>I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with <sup>125</sup>I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry. Omics data were analyzed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and STRING analyses to observe the key genes that exhibited significant changes at the transcriptional and protein levels in MHCC‑97H cells treated with <sup>125</sup>I particles. Finally, the expression levels of key genes (GPNMB, C4BPA, CTH, H1‑0 and MT2A) were verified through reverse transcription quantitative PCR. Following treatment with <sup>125</sup>I, the proliferation, invasion and migration of MHCC‑97H cells were inhibited, and apoptosis was enhanced. The results of omics data analysis indicated that the biological behavior of MHCC‑97H cells treated with <sup>125</sup>I was related to the expression levels of CTH and MT2A genes. These findings indicated that intervention with <sup>125</sup>I radiation particles may induce changes in gene expression, potentially influencing alterations in biological characteristics. In conclusion, these insights may shed light on the underlying mechanisms of <sup>125</sup>I radiation particle therapy in HCC and offer novel targets for HCC treatment.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736249/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptomics and proteomics analysis of the impact of iodine‑125 in hepatocellular carcinoma.\",\"authors\":\"Yang Yang, Wei Yang, Jie Shen, Enci Ding\",\"doi\":\"10.3892/mmr.2025.13431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (<sup>125</sup>I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with <sup>125</sup>I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry. Omics data were analyzed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and STRING analyses to observe the key genes that exhibited significant changes at the transcriptional and protein levels in MHCC‑97H cells treated with <sup>125</sup>I particles. Finally, the expression levels of key genes (GPNMB, C4BPA, CTH, H1‑0 and MT2A) were verified through reverse transcription quantitative PCR. Following treatment with <sup>125</sup>I, the proliferation, invasion and migration of MHCC‑97H cells were inhibited, and apoptosis was enhanced. The results of omics data analysis indicated that the biological behavior of MHCC‑97H cells treated with <sup>125</sup>I was related to the expression levels of CTH and MT2A genes. These findings indicated that intervention with <sup>125</sup>I radiation particles may induce changes in gene expression, potentially influencing alterations in biological characteristics. In conclusion, these insights may shed light on the underlying mechanisms of <sup>125</sup>I radiation particle therapy in HCC and offer novel targets for HCC treatment.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13431\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13431","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
肝细胞癌(HCC)是世界范围内癌症相关死亡率和发病率的常见原因。虽然碘- 125 (125I)粒子近距离放射疗法已广泛用于临床治疗各种类型的癌症,但其治疗HCC有效的确切机制尚不清楚。在本研究中,MHCC - 97H细胞经125I处理后,使用细胞计数试剂盒- 8、5 -乙基- 2' -脱氧尿苷和集落形成试验评估细胞活力和增殖,使用伤口愈合和Transwell试验评估细胞侵袭和迁移,使用流式细胞术检测细胞凋亡。使用Kyoto Encyclopedia of Genes and Genomes、Gene Ontology和STRING分析对组学数据进行分析,观察125I颗粒处理的MHCC‑97H细胞中转录和蛋白水平发生显著变化的关键基因。最后,通过反转录定量PCR验证关键基因GPNMB、C4BPA、CTH、H1‑0和MT2A的表达水平。125I处理后,MHCC - 97H细胞的增殖、侵袭和迁移均受到抑制,凋亡增强。组学数据分析结果表明,125I处理MHCC - 97H细胞的生物学行为与CTH和MT2A基因的表达水平有关。这些发现表明,125I辐射颗粒的干预可能会诱导基因表达的变化,从而可能影响生物学特性的改变。总之,这些见解可能揭示125I放射粒子治疗HCC的潜在机制,并为HCC治疗提供新的靶点。
Integrated transcriptomics and proteomics analysis of the impact of iodine‑125 in hepatocellular carcinoma.
Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (125I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with 125I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry. Omics data were analyzed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and STRING analyses to observe the key genes that exhibited significant changes at the transcriptional and protein levels in MHCC‑97H cells treated with 125I particles. Finally, the expression levels of key genes (GPNMB, C4BPA, CTH, H1‑0 and MT2A) were verified through reverse transcription quantitative PCR. Following treatment with 125I, the proliferation, invasion and migration of MHCC‑97H cells were inhibited, and apoptosis was enhanced. The results of omics data analysis indicated that the biological behavior of MHCC‑97H cells treated with 125I was related to the expression levels of CTH and MT2A genes. These findings indicated that intervention with 125I radiation particles may induce changes in gene expression, potentially influencing alterations in biological characteristics. In conclusion, these insights may shed light on the underlying mechanisms of 125I radiation particle therapy in HCC and offer novel targets for HCC treatment.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.