Ji-Soo Jeong, Jeong-Won Kim, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, So-Young Boo, Su-Ha Lee, Je-Won Ko, Tae-Won Kim
{"title":"阿莫西林对犬假中葡萄球菌的药动学和药效学评价。","authors":"Ji-Soo Jeong, Jeong-Won Kim, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, So-Young Boo, Su-Ha Lee, Je-Won Ko, Tae-Won Kim","doi":"10.3390/pathogens13121121","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance in bacteria from companion animals poses significant public health risks. Prudent antibiotic use, particularly through pharmacokinetics/pharmacodynamics modeling, is crucial for minimizing resistance. We investigated the pharmacokinetics/pharmacodynamics of amoxicillin (AMX) against <i>Staphylococcus pseudintermedius</i>. A pharmacokinetic study was conducted on healthy dogs subcutaneously injected with a dose of 15 mg/kg AMX. The antibacterial efficacy of AMX was evaluated against a standard strain from animals (KCTC 3344) and clinical isolates from dogs (B-2, B-7, and B-8), with minimum inhibitory concentrations (MICs) of 0.25, 0.5, 64, and 16 μg/mL, respectively. The half-life of AMX was 7 h, allowing for extended drug efficacy. The time above MIC (%T > MIC) values indicated that the AMX concentrations were maintained above MICs of the two susceptible strains (KCTC 3344 and B-2) for more than 80% of the time when dosed at a one-day interval, suggesting an effective treatment. The area under the curve over 24 h/MIC ratios confirmed the bacteriostatic, bactericidal, and bacterial eradication effects of AMX against <i>S. pseudintermedius</i> strains, except for B-7 (the most resistant strain). These results support improved clinical dosing strategies for AMX against <i>S. pseudintermedius</i> infections in dogs.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"13 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679838/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and Pharmacodynamics Evaluation of Amoxicillin Against <i>Staphylococcus pseudintermedius</i> in Dogs.\",\"authors\":\"Ji-Soo Jeong, Jeong-Won Kim, Jin-Hwa Kim, Chang-Yeop Kim, Eun-Hye Chung, So-Young Boo, Su-Ha Lee, Je-Won Ko, Tae-Won Kim\",\"doi\":\"10.3390/pathogens13121121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance in bacteria from companion animals poses significant public health risks. Prudent antibiotic use, particularly through pharmacokinetics/pharmacodynamics modeling, is crucial for minimizing resistance. We investigated the pharmacokinetics/pharmacodynamics of amoxicillin (AMX) against <i>Staphylococcus pseudintermedius</i>. A pharmacokinetic study was conducted on healthy dogs subcutaneously injected with a dose of 15 mg/kg AMX. The antibacterial efficacy of AMX was evaluated against a standard strain from animals (KCTC 3344) and clinical isolates from dogs (B-2, B-7, and B-8), with minimum inhibitory concentrations (MICs) of 0.25, 0.5, 64, and 16 μg/mL, respectively. The half-life of AMX was 7 h, allowing for extended drug efficacy. The time above MIC (%T > MIC) values indicated that the AMX concentrations were maintained above MICs of the two susceptible strains (KCTC 3344 and B-2) for more than 80% of the time when dosed at a one-day interval, suggesting an effective treatment. The area under the curve over 24 h/MIC ratios confirmed the bacteriostatic, bactericidal, and bacterial eradication effects of AMX against <i>S. pseudintermedius</i> strains, except for B-7 (the most resistant strain). These results support improved clinical dosing strategies for AMX against <i>S. pseudintermedius</i> infections in dogs.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens13121121\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens13121121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Pharmacokinetics and Pharmacodynamics Evaluation of Amoxicillin Against Staphylococcus pseudintermedius in Dogs.
Antibiotic resistance in bacteria from companion animals poses significant public health risks. Prudent antibiotic use, particularly through pharmacokinetics/pharmacodynamics modeling, is crucial for minimizing resistance. We investigated the pharmacokinetics/pharmacodynamics of amoxicillin (AMX) against Staphylococcus pseudintermedius. A pharmacokinetic study was conducted on healthy dogs subcutaneously injected with a dose of 15 mg/kg AMX. The antibacterial efficacy of AMX was evaluated against a standard strain from animals (KCTC 3344) and clinical isolates from dogs (B-2, B-7, and B-8), with minimum inhibitory concentrations (MICs) of 0.25, 0.5, 64, and 16 μg/mL, respectively. The half-life of AMX was 7 h, allowing for extended drug efficacy. The time above MIC (%T > MIC) values indicated that the AMX concentrations were maintained above MICs of the two susceptible strains (KCTC 3344 and B-2) for more than 80% of the time when dosed at a one-day interval, suggesting an effective treatment. The area under the curve over 24 h/MIC ratios confirmed the bacteriostatic, bactericidal, and bacterial eradication effects of AMX against S. pseudintermedius strains, except for B-7 (the most resistant strain). These results support improved clinical dosing strategies for AMX against S. pseudintermedius infections in dogs.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.