CRISPR/Cas9滴眼液治疗HSV-1降低脑病毒载量:预防神经元损伤的新应用

IF 3.3 3区 医学 Q2 MICROBIOLOGY Pathogens Pub Date : 2024-12-10 DOI:10.3390/pathogens13121087
Rafaela Moraes Pereira de Sousa, Luiza Silveira Garcia, Felipe Simões Lemos, Viviane Souza de Campos, Erik Machado Ferreira, Nathália Alves Araujo de Almeida, Tatiana Maron-Gutierrez, Elen Mello de Souza, Vanessa Salete de Paula
{"title":"CRISPR/Cas9滴眼液治疗HSV-1降低脑病毒载量:预防神经元损伤的新应用","authors":"Rafaela Moraes Pereira de Sousa, Luiza Silveira Garcia, Felipe Simões Lemos, Viviane Souza de Campos, Erik Machado Ferreira, Nathália Alves Araujo de Almeida, Tatiana Maron-Gutierrez, Elen Mello de Souza, Vanessa Salete de Paula","doi":"10.3390/pathogens13121087","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus-1 (HSV-1) can invade the central nervous system (CNS). However, antiviral drugs used to treat HSV-1 have significant toxicity and resistance. An alternative approach involves the use of the CRISPR/Cas9 complex as a viral replication inhibitor. Editing the <i>UL39</i> gene with CRISPR/Cas9 results in >95% inhibition of HSV-1 replication in vitro; however, few studies have investigated alternative therapies in in vivo models. This study aimed to investigate the efficacy of CRISPR/Cas9 targeting the <i>UL39</i> region, which was administered via the ocular route, to reduce the HSV-1 viral count in the CNS of BALB/c mice. Mice were inoculated with HSV-1 and treated using CRISPR/Cas9. The kinetics of CNS infection were assessed, and the effects of CRISPR/Cas9 were compared with those of topical acyclovir treatments. The brain viral load was analyzed, and histopathology and immunofluorescence of the nervous tissue were performed. The group treated with CRISPR/Cas9 showed a reduced viral load on the seventh day post-infection, and no brain inflammation or chromatin compaction was observed in animals that received CRISPR/Cas9 therapy. These findings suggest that CRISPR/Cas9 anti-<i>UL39</i> therapy can reduce the HSV-1 viral load in brain tissue. Therefore, investigating viral detection and evaluating antiviral treatments in the brain is essential.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"13 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676479/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 Eye Drop HSV-1 Treatment Reduces Brain Viral Load: A Novel Application to Prevent Neuronal Damage.\",\"authors\":\"Rafaela Moraes Pereira de Sousa, Luiza Silveira Garcia, Felipe Simões Lemos, Viviane Souza de Campos, Erik Machado Ferreira, Nathália Alves Araujo de Almeida, Tatiana Maron-Gutierrez, Elen Mello de Souza, Vanessa Salete de Paula\",\"doi\":\"10.3390/pathogens13121087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herpes simplex virus-1 (HSV-1) can invade the central nervous system (CNS). However, antiviral drugs used to treat HSV-1 have significant toxicity and resistance. An alternative approach involves the use of the CRISPR/Cas9 complex as a viral replication inhibitor. Editing the <i>UL39</i> gene with CRISPR/Cas9 results in >95% inhibition of HSV-1 replication in vitro; however, few studies have investigated alternative therapies in in vivo models. This study aimed to investigate the efficacy of CRISPR/Cas9 targeting the <i>UL39</i> region, which was administered via the ocular route, to reduce the HSV-1 viral count in the CNS of BALB/c mice. Mice were inoculated with HSV-1 and treated using CRISPR/Cas9. The kinetics of CNS infection were assessed, and the effects of CRISPR/Cas9 were compared with those of topical acyclovir treatments. The brain viral load was analyzed, and histopathology and immunofluorescence of the nervous tissue were performed. The group treated with CRISPR/Cas9 showed a reduced viral load on the seventh day post-infection, and no brain inflammation or chromatin compaction was observed in animals that received CRISPR/Cas9 therapy. These findings suggest that CRISPR/Cas9 anti-<i>UL39</i> therapy can reduce the HSV-1 viral load in brain tissue. Therefore, investigating viral detection and evaluating antiviral treatments in the brain is essential.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens13121087\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens13121087","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单纯疱疹病毒-1 (HSV-1)可以侵入中枢神经系统(CNS)。然而,用于治疗1型单纯疱疹病毒的抗病毒药物具有明显的毒性和耐药性。另一种方法是使用CRISPR/Cas9复合体作为病毒复制抑制剂。用CRISPR/Cas9编辑UL39基因可在体外抑制HSV-1复制95%;然而,很少有研究在体内模型中研究替代疗法。本研究旨在探讨靶向UL39区的CRISPR/Cas9通过眼路给药降低BALB/c小鼠中枢神经系统HSV-1病毒计数的效果。小鼠接种HSV-1并使用CRISPR/Cas9处理。评估CNS感染动力学,并比较CRISPR/Cas9与局部阿昔洛韦治疗的效果。分析脑病毒载量,并对神经组织进行组织病理学和免疫荧光检测。CRISPR/Cas9治疗组在感染后第7天病毒载量降低,接受CRISPR/Cas9治疗的动物没有出现脑炎症或染色质压实。这些发现表明,CRISPR/Cas9抗ul39治疗可以降低脑组织中的HSV-1病毒载量。因此,研究病毒检测和评估大脑中的抗病毒治疗是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 Eye Drop HSV-1 Treatment Reduces Brain Viral Load: A Novel Application to Prevent Neuronal Damage.

Herpes simplex virus-1 (HSV-1) can invade the central nervous system (CNS). However, antiviral drugs used to treat HSV-1 have significant toxicity and resistance. An alternative approach involves the use of the CRISPR/Cas9 complex as a viral replication inhibitor. Editing the UL39 gene with CRISPR/Cas9 results in >95% inhibition of HSV-1 replication in vitro; however, few studies have investigated alternative therapies in in vivo models. This study aimed to investigate the efficacy of CRISPR/Cas9 targeting the UL39 region, which was administered via the ocular route, to reduce the HSV-1 viral count in the CNS of BALB/c mice. Mice were inoculated with HSV-1 and treated using CRISPR/Cas9. The kinetics of CNS infection were assessed, and the effects of CRISPR/Cas9 were compared with those of topical acyclovir treatments. The brain viral load was analyzed, and histopathology and immunofluorescence of the nervous tissue were performed. The group treated with CRISPR/Cas9 showed a reduced viral load on the seventh day post-infection, and no brain inflammation or chromatin compaction was observed in animals that received CRISPR/Cas9 therapy. These findings suggest that CRISPR/Cas9 anti-UL39 therapy can reduce the HSV-1 viral load in brain tissue. Therefore, investigating viral detection and evaluating antiviral treatments in the brain is essential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens
Pathogens Medicine-Immunology and Allergy
CiteScore
6.40
自引率
8.10%
发文量
1285
审稿时长
17.75 days
期刊介绍: Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Antibiotic Resistance Trends in Carbapenem-Resistant Gram-Negative Pathogens and Eight-Year Surveillance of XDR Bloodstream Infections in a Western Greece Tertiary Hospital. Asymptomatic Malaria Cases and Plasmodium Species in Mainland Tanzania and Zanzibar Archipelago (Pemba). Deletion of gE in Herpes Simplex Virus 1 Leads to Increased Extracellular Virus Production and Augmented Interferon Alpha Production by Peripheral Blood Mononuclear Cells. Enhancement of Human Immunodeficiency Virus-Specific CD8+ T Cell Responses with TIGIT Blockade Involves Trogocytosis. Novel Antigenic Variant Infectious Bursal Disease Virus Outbreaks in Japan from 2014 to 2023 and Characterization of an Isolate from Chicken.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1