Olga V Shevchenko, Alexander D Voropaev, Ivan V Bogdanov, Tatiana V Ovchinnikova, Ekaterina I Finkina
{"title":"烟草防御素NaD1对白色念珠菌敏感和耐药菌株的影响。","authors":"Olga V Shevchenko, Alexander D Voropaev, Ivan V Bogdanov, Tatiana V Ovchinnikova, Ekaterina I Finkina","doi":"10.3390/pathogens13121092","DOIUrl":null,"url":null,"abstract":"<p><p>Today, <i>Candida albicans</i> is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of <i>C. albicans</i>. We demonstrated that NaD1 was equally effective and fungicidal against all tested strains. The MIC and MFC values were 6.25 and 12.5 µM, respectively. We showed for the first time that NaD1 could act synergistically not only with caspofungin but also with human host defense antimicrobial peptides cathelicidin LL-37 and β-defensin-2 (HBD2) against susceptible and resistant fungal strains. Using flow cytometry, we demonstrated that NaD1 in combinations with LL-37 or HBD2 can reinforce each other by enhancing membrane disruption. Using the Caco-2 cell monolayer model, we demonstrated that NaD1 impaired the adhesion of <i>C. albicans</i> cells to the human epithelium. Moreover, NaD1 inhibited the formation of fungal biofilms in Sabouraud broth and less markedly in nutrient-rich RPMI-1640 medium, and enhanced the antibiofilm activity of caspofungin. Thus, we hypothesized that NaD1 might affect the development of candidiasis in vivo, including that caused by resistant fungal strains.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"13 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678012/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of the Tobacco Defensin NaD1 Against Susceptible and Resistant Strains of <i>Candida albicans</i>.\",\"authors\":\"Olga V Shevchenko, Alexander D Voropaev, Ivan V Bogdanov, Tatiana V Ovchinnikova, Ekaterina I Finkina\",\"doi\":\"10.3390/pathogens13121092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Today, <i>Candida albicans</i> is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of <i>C. albicans</i>. We demonstrated that NaD1 was equally effective and fungicidal against all tested strains. The MIC and MFC values were 6.25 and 12.5 µM, respectively. We showed for the first time that NaD1 could act synergistically not only with caspofungin but also with human host defense antimicrobial peptides cathelicidin LL-37 and β-defensin-2 (HBD2) against susceptible and resistant fungal strains. Using flow cytometry, we demonstrated that NaD1 in combinations with LL-37 or HBD2 can reinforce each other by enhancing membrane disruption. Using the Caco-2 cell monolayer model, we demonstrated that NaD1 impaired the adhesion of <i>C. albicans</i> cells to the human epithelium. Moreover, NaD1 inhibited the formation of fungal biofilms in Sabouraud broth and less markedly in nutrient-rich RPMI-1640 medium, and enhanced the antibiofilm activity of caspofungin. Thus, we hypothesized that NaD1 might affect the development of candidiasis in vivo, including that caused by resistant fungal strains.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens13121092\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens13121092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Effects of the Tobacco Defensin NaD1 Against Susceptible and Resistant Strains of Candida albicans.
Today, Candida albicans is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of C. albicans. We demonstrated that NaD1 was equally effective and fungicidal against all tested strains. The MIC and MFC values were 6.25 and 12.5 µM, respectively. We showed for the first time that NaD1 could act synergistically not only with caspofungin but also with human host defense antimicrobial peptides cathelicidin LL-37 and β-defensin-2 (HBD2) against susceptible and resistant fungal strains. Using flow cytometry, we demonstrated that NaD1 in combinations with LL-37 or HBD2 can reinforce each other by enhancing membrane disruption. Using the Caco-2 cell monolayer model, we demonstrated that NaD1 impaired the adhesion of C. albicans cells to the human epithelium. Moreover, NaD1 inhibited the formation of fungal biofilms in Sabouraud broth and less markedly in nutrient-rich RPMI-1640 medium, and enhanced the antibiofilm activity of caspofungin. Thus, we hypothesized that NaD1 might affect the development of candidiasis in vivo, including that caused by resistant fungal strains.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.