Pinglian Yang , Xiaoling Rong , Zhechang Gao , Jiaojiao Wang , Zhiping Liu
{"title":"动脉粥样硬化中巨噬细胞极化的代谢和表观遗传调控:分子机制和靶向治疗。","authors":"Pinglian Yang , Xiaoling Rong , Zhechang Gao , Jiaojiao Wang , Zhiping Liu","doi":"10.1016/j.phrs.2025.107588","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"212 ","pages":"Article 107588"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: Molecular mechanisms and targeted therapies\",\"authors\":\"Pinglian Yang , Xiaoling Rong , Zhechang Gao , Jiaojiao Wang , Zhiping Liu\",\"doi\":\"10.1016/j.phrs.2025.107588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.</div></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":\"212 \",\"pages\":\"Article 107588\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661825000131\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000131","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: Molecular mechanisms and targeted therapies
Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.