Hao Sun, Heng Wang, Chaoran Wu, Gang Liu, Meijun He, Hao Zhang, Fengsheng Hou, Hong Liao
{"title":"增强神经元活动通过抑制脑卒中后小胶质细胞介导的突触消除促进功能恢复。","authors":"Hao Sun, Heng Wang, Chaoran Wu, Gang Liu, Meijun He, Hao Zhang, Fengsheng Hou, Hong Liao","doi":"10.1161/STROKEAHA.124.049265","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke.</p><p><strong>Methods: </strong>Adeno-associated virus 2/9-CamKIIa-hM3Dq-mCherry was injected into ipsilesional motor cortex by stereotaxic in the photothrombotic stroke model. Starting from the third day after the stroke, male mice were injected intraperitoneally with clozapine-N-oxide every day to activate excitatory neurons. C1q-blocking antibody and annexin V were used to inhibit C1q and exposed phosphatidylserine (EPS), respectively. The cylinder test and grid-walking test were performed to evaluate functional recovery. The potential molecular mechanisms of excitatory neuronal activation on microglia-mediated synaptic pruning after stroke by immunofluorescence, real-time polymerase chain reaction, Western blotting, and RNA sequencing.</p><p><strong>Results: </strong>Activating excitatory neurons significantly promoted functional recovery and inhibited microglia-mediated synaptic pruning after stroke. Furthermore, it decreased EPS and C1q levels in synapses. On the contrary, inhibiting excitatory neurons aggravated functional defects, promoted microglia-mediated synaptic pruning, and increased EPS and C1q levels in synapses. Selective blocking of EPS repressed C1q tagging of synapses and microglia-mediated synaptic pruning and improved functional recovery. Meanwhile, blocking EPS markedly rescued synaptic density, and motor function deteriorated by chemogenetic inhibition. In addition, C1q-blocking antibody prevented phosphatidylserine engulfment by microglia.</p><p><strong>Conclusions: </strong>Together, these data provide mechanistic insight into microglia-mediated synapse pruning after neuronal activation after stroke and identify the role of C1q binding to EPS in stroke treatment during the repair phase.</p>","PeriodicalId":21989,"journal":{"name":"Stroke","volume":" ","pages":"505-516"},"PeriodicalIF":7.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke.\",\"authors\":\"Hao Sun, Heng Wang, Chaoran Wu, Gang Liu, Meijun He, Hao Zhang, Fengsheng Hou, Hong Liao\",\"doi\":\"10.1161/STROKEAHA.124.049265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke.</p><p><strong>Methods: </strong>Adeno-associated virus 2/9-CamKIIa-hM3Dq-mCherry was injected into ipsilesional motor cortex by stereotaxic in the photothrombotic stroke model. Starting from the third day after the stroke, male mice were injected intraperitoneally with clozapine-N-oxide every day to activate excitatory neurons. C1q-blocking antibody and annexin V were used to inhibit C1q and exposed phosphatidylserine (EPS), respectively. The cylinder test and grid-walking test were performed to evaluate functional recovery. The potential molecular mechanisms of excitatory neuronal activation on microglia-mediated synaptic pruning after stroke by immunofluorescence, real-time polymerase chain reaction, Western blotting, and RNA sequencing.</p><p><strong>Results: </strong>Activating excitatory neurons significantly promoted functional recovery and inhibited microglia-mediated synaptic pruning after stroke. Furthermore, it decreased EPS and C1q levels in synapses. On the contrary, inhibiting excitatory neurons aggravated functional defects, promoted microglia-mediated synaptic pruning, and increased EPS and C1q levels in synapses. Selective blocking of EPS repressed C1q tagging of synapses and microglia-mediated synaptic pruning and improved functional recovery. Meanwhile, blocking EPS markedly rescued synaptic density, and motor function deteriorated by chemogenetic inhibition. In addition, C1q-blocking antibody prevented phosphatidylserine engulfment by microglia.</p><p><strong>Conclusions: </strong>Together, these data provide mechanistic insight into microglia-mediated synapse pruning after neuronal activation after stroke and identify the role of C1q binding to EPS in stroke treatment during the repair phase.</p>\",\"PeriodicalId\":21989,\"journal\":{\"name\":\"Stroke\",\"volume\":\" \",\"pages\":\"505-516\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroke\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/STROKEAHA.124.049265\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/STROKEAHA.124.049265","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke.
Background: Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke.
Methods: Adeno-associated virus 2/9-CamKIIa-hM3Dq-mCherry was injected into ipsilesional motor cortex by stereotaxic in the photothrombotic stroke model. Starting from the third day after the stroke, male mice were injected intraperitoneally with clozapine-N-oxide every day to activate excitatory neurons. C1q-blocking antibody and annexin V were used to inhibit C1q and exposed phosphatidylserine (EPS), respectively. The cylinder test and grid-walking test were performed to evaluate functional recovery. The potential molecular mechanisms of excitatory neuronal activation on microglia-mediated synaptic pruning after stroke by immunofluorescence, real-time polymerase chain reaction, Western blotting, and RNA sequencing.
Results: Activating excitatory neurons significantly promoted functional recovery and inhibited microglia-mediated synaptic pruning after stroke. Furthermore, it decreased EPS and C1q levels in synapses. On the contrary, inhibiting excitatory neurons aggravated functional defects, promoted microglia-mediated synaptic pruning, and increased EPS and C1q levels in synapses. Selective blocking of EPS repressed C1q tagging of synapses and microglia-mediated synaptic pruning and improved functional recovery. Meanwhile, blocking EPS markedly rescued synaptic density, and motor function deteriorated by chemogenetic inhibition. In addition, C1q-blocking antibody prevented phosphatidylserine engulfment by microglia.
Conclusions: Together, these data provide mechanistic insight into microglia-mediated synapse pruning after neuronal activation after stroke and identify the role of C1q binding to EPS in stroke treatment during the repair phase.
期刊介绍:
Stroke is a monthly publication that collates reports of clinical and basic investigation of any aspect of the cerebral circulation and its diseases. The publication covers a wide range of disciplines including anesthesiology, critical care medicine, epidemiology, internal medicine, neurology, neuro-ophthalmology, neuropathology, neuropsychology, neurosurgery, nuclear medicine, nursing, radiology, rehabilitation, speech pathology, vascular physiology, and vascular surgery.
The audience of Stroke includes neurologists, basic scientists, cardiologists, vascular surgeons, internists, interventionalists, neurosurgeons, nurses, and physiatrists.
Stroke is indexed in Biological Abstracts, BIOSIS, CAB Abstracts, Chemical Abstracts, CINAHL, Current Contents, Embase, MEDLINE, and Science Citation Index Expanded.