用系统特异性放射性示踪剂[18F]hGTS13监测癌症铁下垂。

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2025-01-01 DOI:10.7150/thno.101882
Abraham Moses, Rim Malek, Mustafa Tansel Kendirli, Pierre Cheung, Madeleine Landry, Marco Herrera-Barrera, Abbas Khojasteh, Monica Granucci, Syed A Bukhari, Jody E Hooper, Melanie Hayden-Gephart, Scott J Dixon, Lawrence D Recht, Corinne Beinat
{"title":"用系统特异性放射性示踪剂[18F]hGTS13监测癌症铁下垂。","authors":"Abraham Moses, Rim Malek, Mustafa Tansel Kendirli, Pierre Cheung, Madeleine Landry, Marco Herrera-Barrera, Abbas Khojasteh, Monica Granucci, Syed A Bukhari, Jody E Hooper, Melanie Hayden-Gephart, Scott J Dixon, Lawrence D Recht, Corinne Beinat","doi":"10.7150/thno.101882","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies. System xc-, an important player in cellular redox homeostasis, plays a critical role in ferroptosis by mediating the exchange of cystine for glutamate, thus regulating the availability of cysteine, a crucial precursor for glutathione synthesis, and influencing the cellular antioxidant defense system. We have recently reported the development and validation of [<sup>18</sup>F]hGTS13, a radiopharmaceutical specific for system xc-. <b>Methods:</b> In the current work, we characterized the sensitivity of various cell lines to pro-ferroptotic compounds and evaluated the ability of [<sup>18</sup>F]hGTS13 to distinguish between sensitive and resistant cell lines and monitor changes in response to ferroptosis-inducing investigational compounds. We then associated changes in [<sup>18</sup>F]hGTS13 uptake with cellular glutathione content. Furthermore, we evaluated [<sup>18</sup>F]hGTS13 uptake in a rat model of glioma, both before and after treatment with imidazole ketone erastin (IKE), a pro-ferroptotic inhibitor of system xc- activity. <b>Results:</b> Treatment with erastin2, a system xc- inhibitor, significantly decreased [<sup>18</sup>F]hGTS13 uptake and cellular glutathione content <i>in vitro</i>. Dynamic PET/CT imaging of C6 glioma-bearing rats with [<sup>18</sup>F]hGTS13 revealed high and sustained uptake within the intracranial glioma and this uptake was decreased upon pre-treatment with IKE. <b>Conclusion:</b> In summary, [<sup>18</sup>F]hGTS13 represents a promising tool to distinguish cell types that demonstrate sensitivity or resistance to ferroptosis-inducing therapies that target system xc-, and monitor the engagement of these drugs.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 3","pages":"836-849"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring of cancer ferroptosis with [<sup>18</sup>F]hGTS13, a system xc- specific radiotracer.\",\"authors\":\"Abraham Moses, Rim Malek, Mustafa Tansel Kendirli, Pierre Cheung, Madeleine Landry, Marco Herrera-Barrera, Abbas Khojasteh, Monica Granucci, Syed A Bukhari, Jody E Hooper, Melanie Hayden-Gephart, Scott J Dixon, Lawrence D Recht, Corinne Beinat\",\"doi\":\"10.7150/thno.101882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies. System xc-, an important player in cellular redox homeostasis, plays a critical role in ferroptosis by mediating the exchange of cystine for glutamate, thus regulating the availability of cysteine, a crucial precursor for glutathione synthesis, and influencing the cellular antioxidant defense system. We have recently reported the development and validation of [<sup>18</sup>F]hGTS13, a radiopharmaceutical specific for system xc-. <b>Methods:</b> In the current work, we characterized the sensitivity of various cell lines to pro-ferroptotic compounds and evaluated the ability of [<sup>18</sup>F]hGTS13 to distinguish between sensitive and resistant cell lines and monitor changes in response to ferroptosis-inducing investigational compounds. We then associated changes in [<sup>18</sup>F]hGTS13 uptake with cellular glutathione content. Furthermore, we evaluated [<sup>18</sup>F]hGTS13 uptake in a rat model of glioma, both before and after treatment with imidazole ketone erastin (IKE), a pro-ferroptotic inhibitor of system xc- activity. <b>Results:</b> Treatment with erastin2, a system xc- inhibitor, significantly decreased [<sup>18</sup>F]hGTS13 uptake and cellular glutathione content <i>in vitro</i>. Dynamic PET/CT imaging of C6 glioma-bearing rats with [<sup>18</sup>F]hGTS13 revealed high and sustained uptake within the intracranial glioma and this uptake was decreased upon pre-treatment with IKE. <b>Conclusion:</b> In summary, [<sup>18</sup>F]hGTS13 represents a promising tool to distinguish cell types that demonstrate sensitivity or resistance to ferroptosis-inducing therapies that target system xc-, and monitor the engagement of these drugs.</p>\",\"PeriodicalId\":22932,\"journal\":{\"name\":\"Theranostics\",\"volume\":\"15 3\",\"pages\":\"836-849\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theranostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7150/thno.101882\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.101882","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是成人中最常见和侵袭性的原发性脑肿瘤,其特点是对常规治疗具有耐药性和生存率差。铁下垂是一种由脂质过氧化驱动的受调节细胞死亡形式,最近成为GBM治疗的一个有希望的治疗靶点。然而,目前还没有无创成像技术来监测亲衰铁化合物与其各自靶点的结合,或监测基于衰铁疗法的疗效。系统xc-在细胞氧化还原稳态中起重要作用,通过介导胱氨酸交换谷氨酸,从而调节半胱氨酸(谷胱甘肽合成的重要前体)的可用性,影响细胞抗氧化防御系统,在铁死亡中起关键作用。我们最近报道了[18F]hGTS13的开发和验证,这是一种针对系统xc-的放射性药物。方法:在目前的工作中,我们表征了各种细胞系对亲铁性化合物的敏感性,并评估了[18F]hGTS13区分敏感和耐药细胞系的能力,以及监测对诱导铁性化合物的反应变化的能力。然后,我们将[18F]hGTS13摄取的变化与细胞谷胱甘肽含量联系起来。此外,我们评估了[18F]在神经胶质瘤大鼠模型中,咪唑酮erastin(一种系统xc-活性的促铁抑制剂)治疗前后hGTS13的摄取情况。结果:系统xc-抑制剂erastin2显著降低体外hGTS13摄取[18F]和细胞谷胱甘肽含量。具有[18F]hGTS13的C6胶质瘤大鼠的动态PET/CT成像显示颅内胶质瘤内高且持续的摄取,并且在IKE预处理后这种摄取减少。结论:总之,[18F]hGTS13是一种很有前景的工具,可用于区分对xc-系统诱导铁中毒疗法表现出敏感性或耐药性的细胞类型,并监测这些药物的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring of cancer ferroptosis with [18F]hGTS13, a system xc- specific radiotracer.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies. System xc-, an important player in cellular redox homeostasis, plays a critical role in ferroptosis by mediating the exchange of cystine for glutamate, thus regulating the availability of cysteine, a crucial precursor for glutathione synthesis, and influencing the cellular antioxidant defense system. We have recently reported the development and validation of [18F]hGTS13, a radiopharmaceutical specific for system xc-. Methods: In the current work, we characterized the sensitivity of various cell lines to pro-ferroptotic compounds and evaluated the ability of [18F]hGTS13 to distinguish between sensitive and resistant cell lines and monitor changes in response to ferroptosis-inducing investigational compounds. We then associated changes in [18F]hGTS13 uptake with cellular glutathione content. Furthermore, we evaluated [18F]hGTS13 uptake in a rat model of glioma, both before and after treatment with imidazole ketone erastin (IKE), a pro-ferroptotic inhibitor of system xc- activity. Results: Treatment with erastin2, a system xc- inhibitor, significantly decreased [18F]hGTS13 uptake and cellular glutathione content in vitro. Dynamic PET/CT imaging of C6 glioma-bearing rats with [18F]hGTS13 revealed high and sustained uptake within the intracranial glioma and this uptake was decreased upon pre-treatment with IKE. Conclusion: In summary, [18F]hGTS13 represents a promising tool to distinguish cell types that demonstrate sensitivity or resistance to ferroptosis-inducing therapies that target system xc-, and monitor the engagement of these drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Erratum: Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability: Erratum. Erratum: Investigation of the role and mechanism of ARHGAP5-mediated colorectal cancer metastasis: Erratum. Erratum: Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression: Erratum. Erratum: Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications: Erratum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1