常温区域灌注下循环死亡后控制捐赠的机器学习算法:移植物存活预测模型。

IF 5.3 2区 医学 Q1 IMMUNOLOGY Transplantation Pub Date : 2025-01-09 DOI:10.1097/TP.0000000000005312
Rafael Calleja, Marcos Rivera, David Guijo-Rubio, Amelia J Hessheimer, Gloria de la Rosa, Mikel Gastaca, Alejandra Otero, Pablo Ramírez, Andrea Boscà-Robledo, Julio Santoyo, Luis Miguel Marín Gómez, Jesús Villar Del Moral, Yiliam Fundora, Laura Lladó, Carmelo Loinaz, Manuel C Jiménez-Garrido, Gonzalo Rodríguez-Laíz, José Á López-Baena, Ramón Charco, Evaristo Varo, Fernando Rotellar, Ayaya Alonso, Juan C Rodríguez-Sanjuan, Gerardo Blanco, Javier Nuño, David Pacheco, Elisabeth Coll, Beatriz Domínguez-Gil, Constantino Fondevila, María Dolores Ayllón, Manuel Durán, Ruben Ciria, Pedro A Gutiérrez, Antonio Gómez-Orellana, César Hervás-Martínez, Javier Briceño
{"title":"常温区域灌注下循环死亡后控制捐赠的机器学习算法:移植物存活预测模型。","authors":"Rafael Calleja, Marcos Rivera, David Guijo-Rubio, Amelia J Hessheimer, Gloria de la Rosa, Mikel Gastaca, Alejandra Otero, Pablo Ramírez, Andrea Boscà-Robledo, Julio Santoyo, Luis Miguel Marín Gómez, Jesús Villar Del Moral, Yiliam Fundora, Laura Lladó, Carmelo Loinaz, Manuel C Jiménez-Garrido, Gonzalo Rodríguez-Laíz, José Á López-Baena, Ramón Charco, Evaristo Varo, Fernando Rotellar, Ayaya Alonso, Juan C Rodríguez-Sanjuan, Gerardo Blanco, Javier Nuño, David Pacheco, Elisabeth Coll, Beatriz Domínguez-Gil, Constantino Fondevila, María Dolores Ayllón, Manuel Durán, Ruben Ciria, Pedro A Gutiérrez, Antonio Gómez-Orellana, César Hervás-Martínez, Javier Briceño","doi":"10.1097/TP.0000000000005312","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed.</p><p><strong>Methods: </strong>This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained.</p><p><strong>Results: </strong>Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score.</p><p><strong>Conclusions: </strong>The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model.\",\"authors\":\"Rafael Calleja, Marcos Rivera, David Guijo-Rubio, Amelia J Hessheimer, Gloria de la Rosa, Mikel Gastaca, Alejandra Otero, Pablo Ramírez, Andrea Boscà-Robledo, Julio Santoyo, Luis Miguel Marín Gómez, Jesús Villar Del Moral, Yiliam Fundora, Laura Lladó, Carmelo Loinaz, Manuel C Jiménez-Garrido, Gonzalo Rodríguez-Laíz, José Á López-Baena, Ramón Charco, Evaristo Varo, Fernando Rotellar, Ayaya Alonso, Juan C Rodríguez-Sanjuan, Gerardo Blanco, Javier Nuño, David Pacheco, Elisabeth Coll, Beatriz Domínguez-Gil, Constantino Fondevila, María Dolores Ayllón, Manuel Durán, Ruben Ciria, Pedro A Gutiérrez, Antonio Gómez-Orellana, César Hervás-Martínez, Javier Briceño\",\"doi\":\"10.1097/TP.0000000000005312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed.</p><p><strong>Methods: </strong>This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained.</p><p><strong>Results: </strong>Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score.</p><p><strong>Conclusions: </strong>The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.</p>\",\"PeriodicalId\":23316,\"journal\":{\"name\":\"Transplantation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/TP.0000000000005312\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005312","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在循环死亡(cDCD)后的控制捐赠中,已经开发了几个评分来对移植物丢失的风险进行分层。然而,在西班牙人群中,他们的表现并不令人满意,大多数cDCD肝脏使用常温区域灌注(NRP)恢复。因此,我们探索了不同的基于机器学习的分类器作为移植物存活预测模型的作用。在供体-受体(D-R)匹配系统中,开发了一种与终末期肝病评分模型相结合的风险分层评分。方法:本回顾性多中心队列研究使用539对经NRP恢复的cDCD肝脏,包括20个供体、受体和NRP变量。评估了以下基于机器学习的分类器:逻辑回归、脊分类器、支持向量分类器、多层感知器和随机森林。终点是3个月和12个月的移植存活率。使用获得的最佳模型进行3个月和12个月的风险评分。结果:经Logistic回归分析,3个月(受试者工作特征曲线下面积= 0.82)和12个月(受试者工作特征曲线下面积= 0.83)时疗效最佳。在现有终末期肝病评分模型和cDCD-NRP风险评分模型的基础上,提出了一种D-R匹配系统。结论:在研究人群中提出的评分令人满意的表现表明,支持cDCD-NRP移植的肝脏分配具有重要的潜力。外部验证是具有挑战性的,但这种方法可以在其他地区进行探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model.

Background: Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed.

Methods: This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained.

Results: Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score.

Conclusions: The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transplantation
Transplantation 医学-免疫学
CiteScore
8.50
自引率
11.30%
发文量
1906
审稿时长
1 months
期刊介绍: The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year. Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal. Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed. The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation. ​
期刊最新文献
Kidney Transplant Outcomes in Amyloidosis: US National Database Study. All Cloak and No Dagger? Immunosuppression-free Lung Transplantation by Sustained Knockdown of Major Histocompatibility Complex Expression in the Graft. Metabolic Flexibility Predicts Response to Saroglitazar in Liver Transplant Recipients With Metabolic Dysfunction-Associated Steatotic Liver Disease. Organ Transplantation in India: INDEED, for the Common Good! Photoacoustic Tomography Assessments During Ex Vivo Normothermic Perfusion. A Novel and Noninvasive Modality to Evaluate Endothelial Integrity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1