Lukas Kunz, Jigisha Jigisha, Fabrizio Menardo, Alexandros G Sotiropoulos, Helen Zbinden, Shenghao Zou, Dingzhong Tang, Ralph Hückelhoven, Beat Keller, Marion C Müller
{"title":"毒力耗尽试验:结合R基因介导的选择和批量测序快速鉴定小麦白粉病的毒力基因。","authors":"Lukas Kunz, Jigisha Jigisha, Fabrizio Menardo, Alexandros G Sotiropoulos, Helen Zbinden, Shenghao Zou, Dingzhong Tang, Ralph Hückelhoven, Beat Keller, Marion C Müller","doi":"10.1371/journal.ppat.1012799","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt). Wheat resistance breeding frequently relies on the use of resistance (R) genes that encode diverse immune receptors which detect specific avirulence (AVR) effectors and subsequently induce an immune response. While R gene cloning has accelerated recently, AVR identification in many pathogens including Bgt lags behind, preventing pathogen-informed deployment of resistance sources. Here we describe a new \"avirulence depletion (AD) assay\" for rapid identification of AVR genes in Bgt. This assay relies on the selection of a segregating, haploid F1 progeny population on a resistant host, followed by bulk sequencing, thereby allowing rapid avirulence candidate gene identification with high mapping resolution. In a proof-of-concept experiment we mapped the AVR component of the wheat immune receptor Pm3a to a 25 kb genomic interval in Bgt harboring a single effector, the previously described AvrPm3a2/f2. Subsequently, we applied the AD assay to map the unknown AVR effector recognized by the Pm60 immune receptor. We show that AvrPm60 is encoded by three tandemly arrayed, nearly identical effector genes that trigger an immune response upon co-expression with Pm60 and its alleles Pm60a and Pm60b. We furthermore provide evidence that Pm60 outperforms Pm60a and Pm60b through more efficient recognition of AvrPm60 effectors, suggesting it should be prioritized for wheat breeding. Finally, we show that virulence towards Pm60 is caused by simultaneous deletion of all AvrPm60 gene paralogs and that isolates lacking AvrPm60 are especially prevalent in the US thereby limiting the potential of Pm60 in this region. The AD assay is a powerful new tool for rapid and inexpensive AVR identification in Bgt with the potential to contribute to pathogen-informed breeding decisions for the use of novel R genes and regionally tailored gene deployment.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 1","pages":"e1012799"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Avirulence depletion assay: Combining R gene-mediated selection with bulk sequencing for rapid avirulence gene identification in wheat powdery mildew.\",\"authors\":\"Lukas Kunz, Jigisha Jigisha, Fabrizio Menardo, Alexandros G Sotiropoulos, Helen Zbinden, Shenghao Zou, Dingzhong Tang, Ralph Hückelhoven, Beat Keller, Marion C Müller\",\"doi\":\"10.1371/journal.ppat.1012799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt). Wheat resistance breeding frequently relies on the use of resistance (R) genes that encode diverse immune receptors which detect specific avirulence (AVR) effectors and subsequently induce an immune response. While R gene cloning has accelerated recently, AVR identification in many pathogens including Bgt lags behind, preventing pathogen-informed deployment of resistance sources. Here we describe a new \\\"avirulence depletion (AD) assay\\\" for rapid identification of AVR genes in Bgt. This assay relies on the selection of a segregating, haploid F1 progeny population on a resistant host, followed by bulk sequencing, thereby allowing rapid avirulence candidate gene identification with high mapping resolution. In a proof-of-concept experiment we mapped the AVR component of the wheat immune receptor Pm3a to a 25 kb genomic interval in Bgt harboring a single effector, the previously described AvrPm3a2/f2. Subsequently, we applied the AD assay to map the unknown AVR effector recognized by the Pm60 immune receptor. We show that AvrPm60 is encoded by three tandemly arrayed, nearly identical effector genes that trigger an immune response upon co-expression with Pm60 and its alleles Pm60a and Pm60b. We furthermore provide evidence that Pm60 outperforms Pm60a and Pm60b through more efficient recognition of AvrPm60 effectors, suggesting it should be prioritized for wheat breeding. Finally, we show that virulence towards Pm60 is caused by simultaneous deletion of all AvrPm60 gene paralogs and that isolates lacking AvrPm60 are especially prevalent in the US thereby limiting the potential of Pm60 in this region. The AD assay is a powerful new tool for rapid and inexpensive AVR identification in Bgt with the potential to contribute to pathogen-informed breeding decisions for the use of novel R genes and regionally tailored gene deployment.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 1\",\"pages\":\"e1012799\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012799\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012799","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
小麦生产受到多种真菌病原体的威胁,如小麦白粉病真菌(Blumeria graminis f. sp. tritici, Bgt)。小麦抗性育种通常依赖于抗性基因的使用,这些基因编码多种免疫受体,检测特异性无毒效应(AVR)并随后诱导免疫反应。虽然最近R基因克隆加快,但包括Bgt在内的许多病原体的AVR鉴定滞后,阻碍了病原体知情的耐药性来源部署。在这里,我们描述了一种新的“无毒耗尽(AD)试验”,用于快速鉴定Bgt的AVR基因。该试验依赖于在抗性宿主上选择分离的单倍体F1后代群体,然后进行批量测序,从而允许快速鉴定具有高定位分辨率的无毒候选基因。在一项概念验证实验中,我们将小麦免疫受体Pm3a的AVR成分定位到Bgt中含有单一效应物(AvrPm3a2/f2)的25 kb基因组间隔。随后,我们应用AD测定来绘制Pm60免疫受体识别的未知AVR效应。我们发现AvrPm60由三个串联排列的几乎相同的效应基因编码,这些效应基因在与Pm60及其等位基因Pm60a和Pm60b共表达时触发免疫应答。我们进一步提供的证据表明,Pm60通过更有效地识别AvrPm60效应物而优于Pm60a和Pm60b,这表明它应该优先用于小麦育种。最后,我们发现对Pm60的毒力是由所有AvrPm60基因的同时缺失引起的,并且缺乏AvrPm60的分离株在美国特别普遍,从而限制了Pm60在该地区的潜力。AD检测是一种强大的新工具,可以在Bgt中快速和廉价地鉴定AVR,有可能有助于在病原体知情的情况下做出育种决策,使用新的R基因和区域定制基因部署。
Avirulence depletion assay: Combining R gene-mediated selection with bulk sequencing for rapid avirulence gene identification in wheat powdery mildew.
Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt). Wheat resistance breeding frequently relies on the use of resistance (R) genes that encode diverse immune receptors which detect specific avirulence (AVR) effectors and subsequently induce an immune response. While R gene cloning has accelerated recently, AVR identification in many pathogens including Bgt lags behind, preventing pathogen-informed deployment of resistance sources. Here we describe a new "avirulence depletion (AD) assay" for rapid identification of AVR genes in Bgt. This assay relies on the selection of a segregating, haploid F1 progeny population on a resistant host, followed by bulk sequencing, thereby allowing rapid avirulence candidate gene identification with high mapping resolution. In a proof-of-concept experiment we mapped the AVR component of the wheat immune receptor Pm3a to a 25 kb genomic interval in Bgt harboring a single effector, the previously described AvrPm3a2/f2. Subsequently, we applied the AD assay to map the unknown AVR effector recognized by the Pm60 immune receptor. We show that AvrPm60 is encoded by three tandemly arrayed, nearly identical effector genes that trigger an immune response upon co-expression with Pm60 and its alleles Pm60a and Pm60b. We furthermore provide evidence that Pm60 outperforms Pm60a and Pm60b through more efficient recognition of AvrPm60 effectors, suggesting it should be prioritized for wheat breeding. Finally, we show that virulence towards Pm60 is caused by simultaneous deletion of all AvrPm60 gene paralogs and that isolates lacking AvrPm60 are especially prevalent in the US thereby limiting the potential of Pm60 in this region. The AD assay is a powerful new tool for rapid and inexpensive AVR identification in Bgt with the potential to contribute to pathogen-informed breeding decisions for the use of novel R genes and regionally tailored gene deployment.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.