{"title":"当蛋白质降解增加时,26S蛋白酶体的激活剂。","authors":"Donghoon Lee","doi":"10.1038/s12276-024-01385-x","DOIUrl":null,"url":null,"abstract":"<p><p>In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activators of the 26S proteasome when protein degradation increases.\",\"authors\":\"Donghoon Lee\",\"doi\":\"10.1038/s12276-024-01385-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.</p>\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s12276-024-01385-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-024-01385-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Activators of the 26S proteasome when protein degradation increases.
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.