深度模糊:卷积神经网络的盲识别和去模糊。

Biological imaging Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.1017/S2633903X24000096
Valentin Debarnot, Pierre Weiss
{"title":"深度模糊:卷积神经网络的盲识别和去模糊。","authors":"Valentin Debarnot, Pierre Weiss","doi":"10.1017/S2633903X24000096","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators. Numerical experiments show that the proposed method can accurately and robustly recover the blur parameters even for large noise levels. For a convolution model, the average signal-to-noise ratio of the recovered point spread function ranges from 13 dB in the noiseless regime to 8 dB in the high-noise regime. In comparison, the tested alternatives yield negative values. This operator estimate can then be used as an input for an unrolled neural network to deblur the image. Quantitative experiments on synthetic data demonstrate that this method outperforms other commonly used methods both perceptually and in terms of SSIM. The algorithm can process a 512 512 image under a second on a consumer graphics card and does not require any human interaction once the operator parameterization has been set up.<sup>1</sup>.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":"4 ","pages":"e13"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep-blur: Blind identification and deblurring with convolutional neural networks.\",\"authors\":\"Valentin Debarnot, Pierre Weiss\",\"doi\":\"10.1017/S2633903X24000096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators. Numerical experiments show that the proposed method can accurately and robustly recover the blur parameters even for large noise levels. For a convolution model, the average signal-to-noise ratio of the recovered point spread function ranges from 13 dB in the noiseless regime to 8 dB in the high-noise regime. In comparison, the tested alternatives yield negative values. This operator estimate can then be used as an input for an unrolled neural network to deblur the image. Quantitative experiments on synthetic data demonstrate that this method outperforms other commonly used methods both perceptually and in terms of SSIM. The algorithm can process a 512 512 image under a second on a consumer graphics card and does not require any human interaction once the operator parameterization has been set up.<sup>1</sup>.</p>\",\"PeriodicalId\":72371,\"journal\":{\"name\":\"Biological imaging\",\"volume\":\"4 \",\"pages\":\"e13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2633903X24000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X24000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个神经网络架构和一个训练程序来估计模糊算子并从单个退化图像中去模糊图像。我们的关键假设是前向运算符可以由低维向量参数化。我们考虑的模型包括用瞳孔平面上的泽尼克多项式或包含空间变化算子的积卷积展开来描述点扩展函数。数值实验表明,该方法即使在较大噪声水平下也能准确、鲁棒地恢复模糊参数。对于卷积模型,恢复点扩展函数的平均信噪比在无噪声条件下为13 dB,在高噪声条件下为8 dB。相比之下,测试的替代方案产生负值。然后,这个算子估计可以用作展开神经网络的输入来消除图像的模糊。合成数据的定量实验表明,该方法在感知和SSIM方面都优于其他常用方法。该算法可以在一秒钟内处理消费类显卡上的512 512图像,并且一旦设置了操作员参数化,就不需要任何人工交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep-blur: Blind identification and deblurring with convolutional neural networks.

We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators. Numerical experiments show that the proposed method can accurately and robustly recover the blur parameters even for large noise levels. For a convolution model, the average signal-to-noise ratio of the recovered point spread function ranges from 13 dB in the noiseless regime to 8 dB in the high-noise regime. In comparison, the tested alternatives yield negative values. This operator estimate can then be used as an input for an unrolled neural network to deblur the image. Quantitative experiments on synthetic data demonstrate that this method outperforms other commonly used methods both perceptually and in terms of SSIM. The algorithm can process a 512 512 image under a second on a consumer graphics card and does not require any human interaction once the operator parameterization has been set up.1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep-learning-based image compression for microscopy images: An empirical study. The quest for early detection of retinal disease: 3D CycleGAN-based translation of optical coherence tomography into confocal microscopy. Bridging the gap: Integrating cutting-edge techniques into biological imaging with deepImageJ. Deep-blur: Blind identification and deblurring with convolutional neural networks. Exploring self-supervised learning biases for microscopy image representation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1