预测择期胸腹主动脉瘤开放性修复患者的手术死亡率。

Kyle W. Blackburn BS , Susan Y. Green MPH , Allen Kuncheria BA , Meng Li PhD , Adel M. Hassan BA , Brittany Rhoades PhD , Scott A. Weldon MA , Subhasis Chatterjee MD , Marc R. Moon MD , Scott A. LeMaire MD , Joseph S. Coselli MD
{"title":"预测择期胸腹主动脉瘤开放性修复患者的手术死亡率。","authors":"Kyle W. Blackburn BS ,&nbsp;Susan Y. Green MPH ,&nbsp;Allen Kuncheria BA ,&nbsp;Meng Li PhD ,&nbsp;Adel M. Hassan BA ,&nbsp;Brittany Rhoades PhD ,&nbsp;Scott A. Weldon MA ,&nbsp;Subhasis Chatterjee MD ,&nbsp;Marc R. Moon MD ,&nbsp;Scott A. LeMaire MD ,&nbsp;Joseph S. Coselli MD","doi":"10.1016/j.xjon.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>We have developed a model aimed at identifying preoperative predictors of operative mortality in patients who undergo elective, open thoracoabdominal aortic aneurysm (TAAA) repair. We converted this model into an intuitive nomogram to aid preoperative counseling.</div></div><div><h3>Methods</h3><div>We retrospectively analyzed data from 2884 elective, open TAAA repairs performed between 1986 and 2023 in a single practice. Using clinical and selected operative variables, we built 4 predictive models: multivariable logistic regression (MLR), random forest, support vector machine, and gradient boosting machine. Each model’s predictive effectiveness was evaluated with the C-statistic. Test C-statistics were computed using an 80:20 cross-validation scheme with 1000 iterations.</div></div><div><h3>Results</h3><div>Operative death occurred in 200 patients (6.9%). Test set C-statistics showed that the MLR model (median, 0.68; interquartile range [IQR], 0.65-0.71) outperformed the machine learning models (0.61 [IQR, 0.59-0.64] for random forest; 0.61 [IQR, 0.58-0.64] for support vector machine; 0.65 [IQR, 0.62-0.67] for gradient boosting machine). The final MLR model was based on 7 characteristics: increasing age (odds ratio [OR], 1.04/y; <em>P</em> &lt; .001), cerebrovascular disease (OR, 1.54; <em>P</em> = .01), chronic kidney disease (OR, 1.53; <em>P</em> = .008), symptomatic aneurysm (OR, 1.42; <em>P</em> = .02), and Crawford extent I (OR, 0.66; <em>P</em> = .08), extent II (OR, 1.61; <em>P</em> = .01), and extent IV (OR, 0.41; <em>P</em> = .002). We converted this model into a nomogram.</div></div><div><h3>Conclusions</h3><div>Using institutional data, we evaluated several models to predict operative mortality in elective TAAA repair, using information available to surgeons preoperatively. We then converted the best predictive model, the MLR model, into an intuitive nomogram to aid patient counseling.</div></div>","PeriodicalId":74032,"journal":{"name":"JTCVS open","volume":"22 ","pages":"Pages 95-103"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704537/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting operative mortality in patients who undergo elective open thoracoabdominal aortic aneurysm repair\",\"authors\":\"Kyle W. Blackburn BS ,&nbsp;Susan Y. Green MPH ,&nbsp;Allen Kuncheria BA ,&nbsp;Meng Li PhD ,&nbsp;Adel M. Hassan BA ,&nbsp;Brittany Rhoades PhD ,&nbsp;Scott A. Weldon MA ,&nbsp;Subhasis Chatterjee MD ,&nbsp;Marc R. Moon MD ,&nbsp;Scott A. LeMaire MD ,&nbsp;Joseph S. Coselli MD\",\"doi\":\"10.1016/j.xjon.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>We have developed a model aimed at identifying preoperative predictors of operative mortality in patients who undergo elective, open thoracoabdominal aortic aneurysm (TAAA) repair. We converted this model into an intuitive nomogram to aid preoperative counseling.</div></div><div><h3>Methods</h3><div>We retrospectively analyzed data from 2884 elective, open TAAA repairs performed between 1986 and 2023 in a single practice. Using clinical and selected operative variables, we built 4 predictive models: multivariable logistic regression (MLR), random forest, support vector machine, and gradient boosting machine. Each model’s predictive effectiveness was evaluated with the C-statistic. Test C-statistics were computed using an 80:20 cross-validation scheme with 1000 iterations.</div></div><div><h3>Results</h3><div>Operative death occurred in 200 patients (6.9%). Test set C-statistics showed that the MLR model (median, 0.68; interquartile range [IQR], 0.65-0.71) outperformed the machine learning models (0.61 [IQR, 0.59-0.64] for random forest; 0.61 [IQR, 0.58-0.64] for support vector machine; 0.65 [IQR, 0.62-0.67] for gradient boosting machine). The final MLR model was based on 7 characteristics: increasing age (odds ratio [OR], 1.04/y; <em>P</em> &lt; .001), cerebrovascular disease (OR, 1.54; <em>P</em> = .01), chronic kidney disease (OR, 1.53; <em>P</em> = .008), symptomatic aneurysm (OR, 1.42; <em>P</em> = .02), and Crawford extent I (OR, 0.66; <em>P</em> = .08), extent II (OR, 1.61; <em>P</em> = .01), and extent IV (OR, 0.41; <em>P</em> = .002). We converted this model into a nomogram.</div></div><div><h3>Conclusions</h3><div>Using institutional data, we evaluated several models to predict operative mortality in elective TAAA repair, using information available to surgeons preoperatively. We then converted the best predictive model, the MLR model, into an intuitive nomogram to aid patient counseling.</div></div>\",\"PeriodicalId\":74032,\"journal\":{\"name\":\"JTCVS open\",\"volume\":\"22 \",\"pages\":\"Pages 95-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JTCVS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266627362400250X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTCVS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266627362400250X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们建立了一个模型,旨在确定择期开放性胸腹主动脉瘤(TAAA)修复患者手术死亡率的术前预测因素。我们将这个模型转换成直观的nomogram来帮助术前咨询。方法:回顾性分析1986年至2023年间2884例选择性开放式TAAA修补术的资料。利用临床和选定的手术变量,我们建立了4种预测模型:多变量逻辑回归(MLR)、随机森林、支持向量机和梯度增强机。用c统计量评价各模型的预测有效性。测试c统计使用80:20的交叉验证方案计算,迭代1000次。结果:手术死亡200例(6.9%)。检验集c统计量显示,MLR模型(中位数,0.68;四分位数间距[IQR], 0.65-0.71)优于机器学习模型(随机森林为0.61 [IQR, 0.59-0.64];0.61 [IQR, 0.58-0.64];0.65 [IQR, 0.62-0.67]为梯度增强机)。最终的MLR模型基于7个特征:年龄增加(优势比[OR], 1.04/y;P P = 0.01),慢性肾病(OR, 1.53;P = 0.008),有症状的动脉瘤(OR, 1.42;P = .02), Crawford程度I (OR, 0.66;P = .08),程度II (OR, 1.61;P = 0.01),程度IV (OR, 0.41;p = .002)。我们把这个模型转换成图形。结论:利用机构数据,我们评估了几种预测选择性TAAA修复手术死亡率的模型,使用术前外科医生可获得的信息。然后我们将最好的预测模型,MLR模型,转换成直观的nomogram来帮助患者进行咨询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting operative mortality in patients who undergo elective open thoracoabdominal aortic aneurysm repair

Background

We have developed a model aimed at identifying preoperative predictors of operative mortality in patients who undergo elective, open thoracoabdominal aortic aneurysm (TAAA) repair. We converted this model into an intuitive nomogram to aid preoperative counseling.

Methods

We retrospectively analyzed data from 2884 elective, open TAAA repairs performed between 1986 and 2023 in a single practice. Using clinical and selected operative variables, we built 4 predictive models: multivariable logistic regression (MLR), random forest, support vector machine, and gradient boosting machine. Each model’s predictive effectiveness was evaluated with the C-statistic. Test C-statistics were computed using an 80:20 cross-validation scheme with 1000 iterations.

Results

Operative death occurred in 200 patients (6.9%). Test set C-statistics showed that the MLR model (median, 0.68; interquartile range [IQR], 0.65-0.71) outperformed the machine learning models (0.61 [IQR, 0.59-0.64] for random forest; 0.61 [IQR, 0.58-0.64] for support vector machine; 0.65 [IQR, 0.62-0.67] for gradient boosting machine). The final MLR model was based on 7 characteristics: increasing age (odds ratio [OR], 1.04/y; P < .001), cerebrovascular disease (OR, 1.54; P = .01), chronic kidney disease (OR, 1.53; P = .008), symptomatic aneurysm (OR, 1.42; P = .02), and Crawford extent I (OR, 0.66; P = .08), extent II (OR, 1.61; P = .01), and extent IV (OR, 0.41; P = .002). We converted this model into a nomogram.

Conclusions

Using institutional data, we evaluated several models to predict operative mortality in elective TAAA repair, using information available to surgeons preoperatively. We then converted the best predictive model, the MLR model, into an intuitive nomogram to aid patient counseling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Total aortic arch replacement versus proximal aortic repair for acute type a aortic dissection: A single-center 30-year experience External validation of the German Registry for Acute Aortic Dissection Type A score in patients undergoing surgery for acute type A aortic dissection Distal anastomotic new entry tears and aortic remodeling following type A dissection repair: A systematic review Aortic valve repair in a middle-income country: Exceptional outcomes and mid-term results Tricuspid valve replacement with bioprostheses: Which type fits best?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1