网络型II型胶原的力学:实验,本构模型和验证。

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2025-02-01 DOI:10.1016/j.actbio.2024.12.043
Phoebe Szarek , David M. Pierce
{"title":"网络型II型胶原的力学:实验,本构模型和验证。","authors":"Phoebe Szarek ,&nbsp;David M. Pierce","doi":"10.1016/j.actbio.2024.12.043","DOIUrl":null,"url":null,"abstract":"<div><div>In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress–stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril. We identified two distinct failure mechanisms: one without softening before failure and another with pronounced softening. Our findings reveal that network morphology significantly influences the bulk mechanical response, providing a framework for modeling the complex behavior of collagen fibrils in both healthy and diseased tissues. The validated model enhances the accuracy of finite element models used in analyses of soft tissues and may deepen our understanding of the mechanical progression of diseases like osteoarthritis. Our results offer valuable insights into the mechanics of type II collagen, with implications for improving computational models and for guiding future studies in tissue regeneration and disease treatment.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"193 ","pages":"Pages 267-278"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation\",\"authors\":\"Phoebe Szarek ,&nbsp;David M. Pierce\",\"doi\":\"10.1016/j.actbio.2024.12.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress–stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril. We identified two distinct failure mechanisms: one without softening before failure and another with pronounced softening. Our findings reveal that network morphology significantly influences the bulk mechanical response, providing a framework for modeling the complex behavior of collagen fibrils in both healthy and diseased tissues. The validated model enhances the accuracy of finite element models used in analyses of soft tissues and may deepen our understanding of the mechanical progression of diseases like osteoarthritis. Our results offer valuable insights into the mechanics of type II collagen, with implications for improving computational models and for guiding future studies in tissue regeneration and disease treatment.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"193 \",\"pages\":\"Pages 267-278\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124007633\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124007633","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了II型胶原原纤维的力学,这是包括软骨在内的许多承重组织的基本结构成分。尽管II型胶原蛋白在维持组织完整性方面起着至关重要的作用,但目前的力学文献中尚未建立II型胶原原纤维在张力下的应力-拉伸和失效响应。为了解决这一知识空白,我们对关节软骨分离的胶原网络进行了拉伸试验,并建立了II型胶原纤维的有效本构模型。我们确定了两种不同的失效机制:一种在失效前没有软化,另一种有明显的软化。我们的研究结果表明,网络形态显著影响整体力学响应,为健康和病变组织中胶原原纤维的复杂行为建模提供了一个框架。该验证模型提高了用于软组织分析的有限元模型的准确性,并可能加深我们对骨关节炎等疾病的机械进展的理解。我们的研究结果为II型胶原蛋白的机制提供了有价值的见解,对改进计算模型和指导未来组织再生和疾病治疗的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation
In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress–stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril. We identified two distinct failure mechanisms: one without softening before failure and another with pronounced softening. Our findings reveal that network morphology significantly influences the bulk mechanical response, providing a framework for modeling the complex behavior of collagen fibrils in both healthy and diseased tissues. The validated model enhances the accuracy of finite element models used in analyses of soft tissues and may deepen our understanding of the mechanical progression of diseases like osteoarthritis. Our results offer valuable insights into the mechanics of type II collagen, with implications for improving computational models and for guiding future studies in tissue regeneration and disease treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Corrigendum to “A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes” [Acta Biomaterialia 2021, 124, 205-218] Corrigendum to “Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration” [Acta Biomaterialia 140, 2022, 122-246] Physical exercise impacts bone remodeling around bio-resorbable magnesium implants A metal-organic framework functionalized CaO2-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca2+ overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1