一种利用脑交换装置记录的脑电图在线尖峰检测与监测框架。

Behrang Fazli Besheli, Amir Hossein Ayyoubi, Jhan L Okkabaz, Chandra Prakash Swamy, Michael M Quach, Kai J Miller, Gregory A Worrell, Nuri F Ince
{"title":"一种利用脑交换装置记录的脑电图在线尖峰检测与监测框架。","authors":"Behrang Fazli Besheli, Amir Hossein Ayyoubi, Jhan L Okkabaz, Chandra Prakash Swamy, Michael M Quach, Kai J Miller, Gregory A Worrell, Nuri F Ince","doi":"10.3217/978-3-99161-014-4-075","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects. A pool of detected spikes is then broadcasted using User Datagram Protocol (UDP) to an external graphical user interface for further post-processing and visualization. The real-time spike detector demonstrated a 99% similarity index with the previously published offline detector, identifying interictal spikes. Furthermore, our findings indicated that channels with highest spike rates, captured with Brain Interchange CorTec, were in the epileptogenic focus. By enabling the detection of interictal spikes in an online fashion, this work provides early feedback on the probable seizure onset zone (SOZ) and suggests a promising direction for enhancing SOZ localization accuracy to clinicians, which is crucial for the surgical treatment of epilepsy.</p>","PeriodicalId":520372,"journal":{"name":"Proceedings of the ... International Brain-Computer Interface Conference","volume":"2024 ","pages":"425-431"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706362/pdf/","citationCount":"0","resultStr":"{\"title\":\"AN ONLINE SPIKE DETECTION AND MONITORING FRAMEWORK IN IEEG RECORDED USING BRAIN INTERCHANGE DEVICE.\",\"authors\":\"Behrang Fazli Besheli, Amir Hossein Ayyoubi, Jhan L Okkabaz, Chandra Prakash Swamy, Michael M Quach, Kai J Miller, Gregory A Worrell, Nuri F Ince\",\"doi\":\"10.3217/978-3-99161-014-4-075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects. A pool of detected spikes is then broadcasted using User Datagram Protocol (UDP) to an external graphical user interface for further post-processing and visualization. The real-time spike detector demonstrated a 99% similarity index with the previously published offline detector, identifying interictal spikes. Furthermore, our findings indicated that channels with highest spike rates, captured with Brain Interchange CorTec, were in the epileptogenic focus. By enabling the detection of interictal spikes in an online fashion, this work provides early feedback on the probable seizure onset zone (SOZ) and suggests a promising direction for enhancing SOZ localization accuracy to clinicians, which is crucial for the surgical treatment of epilepsy.</p>\",\"PeriodicalId\":520372,\"journal\":{\"name\":\"Proceedings of the ... International Brain-Computer Interface Conference\",\"volume\":\"2024 \",\"pages\":\"425-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Brain-Computer Interface Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3217/978-3-99161-014-4-075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Brain-Computer Interface Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3217/978-3-99161-014-4-075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们在MATLAB Simulink中开发并验证了一个用于记录和分析颅内脑电图(iEEG)的在线分析框架。该框架旨在在记录数据时发现癫痫患者的间歇尖峰。在三名受试者中,使用脑交换CorTec记录了间隔10分钟的脑电图数据,并进行了在线尖峰检测。然后使用用户数据报协议(UDP)将检测到的峰值池广播到外部图形用户界面,以进行进一步的后处理和可视化。实时尖峰检测器与之前发布的离线检测器具有99%的相似度,可以识别间隔尖峰。此外,我们的研究结果表明,脑交换CorTec捕获的峰值率最高的通道处于致痫灶。通过在线方式检测间歇峰,这项工作提供了关于可能癫痫发作区(SOZ)的早期反馈,并为临床医生提高SOZ定位准确性提供了一个有希望的方向,这对癫痫的手术治疗至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AN ONLINE SPIKE DETECTION AND MONITORING FRAMEWORK IN IEEG RECORDED USING BRAIN INTERCHANGE DEVICE.

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects. A pool of detected spikes is then broadcasted using User Datagram Protocol (UDP) to an external graphical user interface for further post-processing and visualization. The real-time spike detector demonstrated a 99% similarity index with the previously published offline detector, identifying interictal spikes. Furthermore, our findings indicated that channels with highest spike rates, captured with Brain Interchange CorTec, were in the epileptogenic focus. By enabling the detection of interictal spikes in an online fashion, this work provides early feedback on the probable seizure onset zone (SOZ) and suggests a promising direction for enhancing SOZ localization accuracy to clinicians, which is crucial for the surgical treatment of epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AN ONLINE SPIKE DETECTION AND MONITORING FRAMEWORK IN IEEG RECORDED USING BRAIN INTERCHANGE DEVICE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1