Sophie E Waller, Joseph B Stockwell, Victor S C Fung, Kaarin J Anstey, James G Colebatch, Maria Markoulli, Arun V Krishnan
{"title":"局部回顾:神经退行性疾病的眼表异常。","authors":"Sophie E Waller, Joseph B Stockwell, Victor S C Fung, Kaarin J Anstey, James G Colebatch, Maria Markoulli, Arun V Krishnan","doi":"10.1097/OPX.0000000000002215","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.</p><p><strong>Background: </strong>This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development. Corneal confocal microscopy, traditionally used for studying corneal health, offers high-resolution imaging of corneal nerves and has shown promise for examining systemic diseases such as Alzheimer disease and Parkinson's disease. Complementarily, tear fluid analysis, known for its ease of collection, reflects systemic changes in neurodegenerative conditions.</p><p><strong>Conclusion: </strong>Together, these noninvasive techniques provide insights into disease onset and progression and hold potential for advancing diagnostic and treatment strategies.</p>","PeriodicalId":19649,"journal":{"name":"Optometry and Vision Science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topical review: Ocular surface abnormalities in neurodegenerative disorders.\",\"authors\":\"Sophie E Waller, Joseph B Stockwell, Victor S C Fung, Kaarin J Anstey, James G Colebatch, Maria Markoulli, Arun V Krishnan\",\"doi\":\"10.1097/OPX.0000000000002215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.</p><p><strong>Background: </strong>This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development. Corneal confocal microscopy, traditionally used for studying corneal health, offers high-resolution imaging of corneal nerves and has shown promise for examining systemic diseases such as Alzheimer disease and Parkinson's disease. Complementarily, tear fluid analysis, known for its ease of collection, reflects systemic changes in neurodegenerative conditions.</p><p><strong>Conclusion: </strong>Together, these noninvasive techniques provide insights into disease onset and progression and hold potential for advancing diagnostic and treatment strategies.</p>\",\"PeriodicalId\":19649,\"journal\":{\"name\":\"Optometry and Vision Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optometry and Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/OPX.0000000000002215\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optometry and Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/OPX.0000000000002215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Topical review: Ocular surface abnormalities in neurodegenerative disorders.
Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.
Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development. Corneal confocal microscopy, traditionally used for studying corneal health, offers high-resolution imaging of corneal nerves and has shown promise for examining systemic diseases such as Alzheimer disease and Parkinson's disease. Complementarily, tear fluid analysis, known for its ease of collection, reflects systemic changes in neurodegenerative conditions.
Conclusion: Together, these noninvasive techniques provide insights into disease onset and progression and hold potential for advancing diagnostic and treatment strategies.
期刊介绍:
Optometry and Vision Science is the monthly peer-reviewed scientific publication of the American Academy of Optometry, publishing original research since 1924. Optometry and Vision Science is an internationally recognized source for education and information on current discoveries in optometry, physiological optics, vision science, and related fields. The journal considers original contributions that advance clinical practice, vision science, and public health. Authors should remember that the journal reaches readers worldwide and their submissions should be relevant and of interest to a broad audience. Topical priorities include, but are not limited to: clinical and laboratory research, evidence-based reviews, contact lenses, ocular growth and refractive error development, eye movements, visual function and perception, biology of the eye and ocular disease, epidemiology and public health, biomedical optics and instrumentation, novel and important clinical observations and treatments, and optometric education.