{"title":"一种支持多源基因表达数据整合的高维线性回归鲁棒迁移学习方法。","authors":"Lulu Pan, Qian Gao, Kecheng Wei, Yongfu Yu, Guoyou Qin, Tong Wang","doi":"10.1371/journal.pcbi.1012739","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches. In this paper, we study the transfer learning problem under high-dimensional linear models with t-distributed error (Trans-PtLR), which aims to improve the estimation and prediction of target data by borrowing information from useful source data and offering robustness to accommodate complex data with heavy tails and outliers. In the oracle case with known transferable source datasets, a transfer learning algorithm based on penalized maximum likelihood and expectation-maximization algorithm is established. To avoid including non-informative sources, we propose to select the transferable sources based on cross-validation. Extensive simulation experiments as well as an application demonstrate that Trans-PtLR demonstrates robustness and better performance of estimation and prediction when heavy-tail and outliers exist compared to transfer learning for linear regression model with normal error distribution. Data integration, Variable selection, T distribution, Expectation maximization algorithm, Genotype-Tissue Expression, Cross validation.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012739"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756795/pdf/","citationCount":"0","resultStr":"{\"title\":\"A robust transfer learning approach for high-dimensional linear regression to support integration of multi-source gene expression data.\",\"authors\":\"Lulu Pan, Qian Gao, Kecheng Wei, Yongfu Yu, Guoyou Qin, Tong Wang\",\"doi\":\"10.1371/journal.pcbi.1012739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches. In this paper, we study the transfer learning problem under high-dimensional linear models with t-distributed error (Trans-PtLR), which aims to improve the estimation and prediction of target data by borrowing information from useful source data and offering robustness to accommodate complex data with heavy tails and outliers. In the oracle case with known transferable source datasets, a transfer learning algorithm based on penalized maximum likelihood and expectation-maximization algorithm is established. To avoid including non-informative sources, we propose to select the transferable sources based on cross-validation. Extensive simulation experiments as well as an application demonstrate that Trans-PtLR demonstrates robustness and better performance of estimation and prediction when heavy-tail and outliers exist compared to transfer learning for linear regression model with normal error distribution. Data integration, Variable selection, T distribution, Expectation maximization algorithm, Genotype-Tissue Expression, Cross validation.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 1\",\"pages\":\"e1012739\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012739\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012739","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A robust transfer learning approach for high-dimensional linear regression to support integration of multi-source gene expression data.
Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches. In this paper, we study the transfer learning problem under high-dimensional linear models with t-distributed error (Trans-PtLR), which aims to improve the estimation and prediction of target data by borrowing information from useful source data and offering robustness to accommodate complex data with heavy tails and outliers. In the oracle case with known transferable source datasets, a transfer learning algorithm based on penalized maximum likelihood and expectation-maximization algorithm is established. To avoid including non-informative sources, we propose to select the transferable sources based on cross-validation. Extensive simulation experiments as well as an application demonstrate that Trans-PtLR demonstrates robustness and better performance of estimation and prediction when heavy-tail and outliers exist compared to transfer learning for linear regression model with normal error distribution. Data integration, Variable selection, T distribution, Expectation maximization algorithm, Genotype-Tissue Expression, Cross validation.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.