布卢姆综合征解旋酶n端内在紊乱区的功能。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2025-01-10 DOI:10.1093/genetics/iyaf005
Colleen C Bereda, Evan B Dewey, Mohamed A Nasr, Venkat R Chirasani, Jeff Sekelsky
{"title":"布卢姆综合征解旋酶n端内在紊乱区的功能。","authors":"Colleen C Bereda, Evan B Dewey, Mohamed A Nasr, Venkat R Chirasani, Jeff Sekelsky","doi":"10.1093/genetics/iyaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be intrinsically disordered. Because this region is poorly conserved across metazoa, we compared closely related species to identify regions of conservation that might be associated with important functions. We deleted two Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on several Blm functions. Each deletion had distinct effects. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is less important. Loss of CR1 leads to defects in meiotic crossover designation and patterning but does not impact meiotic chromosome segregation, whereas deletion of CR2 does not result in significant meiotic defects. Thus, while the two regions have overlapping functions, there are distinct roles facilitated by each. These results provide novel insights into functions of the N-terminal region of Blm helicase.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functions of the Bloom Syndrome Helicase N-terminal Intrinsically Disordered Region.\",\"authors\":\"Colleen C Bereda, Evan B Dewey, Mohamed A Nasr, Venkat R Chirasani, Jeff Sekelsky\",\"doi\":\"10.1093/genetics/iyaf005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be intrinsically disordered. Because this region is poorly conserved across metazoa, we compared closely related species to identify regions of conservation that might be associated with important functions. We deleted two Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on several Blm functions. Each deletion had distinct effects. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is less important. Loss of CR1 leads to defects in meiotic crossover designation and patterning but does not impact meiotic chromosome segregation, whereas deletion of CR2 does not result in significant meiotic defects. Thus, while the two regions have overlapping functions, there are distinct roles facilitated by each. These results provide novel insights into functions of the N-terminal region of Blm helicase.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf005\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

布卢姆综合征解旋酶(Blm)是一种参与DNA修复、细胞周期进程和发育的RecQ家族解旋酶。人类BLM的致病变异导致常染色体隐性遗传病Bloom综合征,其特点是易患多种类型的癌症。先前的研究表明,缺乏解旋酶活性或蛋白质的果蝇Blm突变体对DNA损伤剂敏感,修复DNA双链断裂(DSBs)缺陷,雌性不育以及减数分裂中染色体分离不当。Blm同源物具有一个保守且高度结构化的RecQ解旋酶结构域,但预计超过一半的蛋白质,特别是在n端,本质上是无序的。由于该区域在后生动物中保守性较差,我们比较了密切相关的物种,以确定可能与重要功能相关的保护区域。我们使用CRISPR/Cas9基因编辑技术删除了D. melanogaster中两个果蝇保守的区域,并评估了对几个Blm功能的影响。每次删除都有不同的效果。保守区1 (CR1)或保守区2 (CR2)的缺失通过合成依赖性链退火破坏DSB修复,并导致有丝分裂交叉增加。相比之下,CR2对胚胎发育至关重要,而CR1则不那么重要。CR1的缺失会导致减数分裂交叉指定和模式的缺陷,但不会影响减数分裂染色体分离,而CR2的缺失不会导致重大的减数分裂缺陷。因此,虽然这两个区域有重叠的功能,但每个区域都有不同的作用。这些结果为研究Blm解旋酶n端区域的功能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functions of the Bloom Syndrome Helicase N-terminal Intrinsically Disordered Region.

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be intrinsically disordered. Because this region is poorly conserved across metazoa, we compared closely related species to identify regions of conservation that might be associated with important functions. We deleted two Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on several Blm functions. Each deletion had distinct effects. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is less important. Loss of CR1 leads to defects in meiotic crossover designation and patterning but does not impact meiotic chromosome segregation, whereas deletion of CR2 does not result in significant meiotic defects. Thus, while the two regions have overlapping functions, there are distinct roles facilitated by each. These results provide novel insights into functions of the N-terminal region of Blm helicase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
Detecting deviations from Kingman coalescence using two-site frequency spectra. Differentiating mechanism from outcome for ancestry-assortative mating in admixed human populations. Balancing selfing and outcrossing: the genetics and cell biology of nematodes with three sexual morphs. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces. Genomic prediction of heterosis, inbreeding control, and mate allocation in outbred diploid and tetraploid populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1