少突胶质细胞中的肌酸外排转运体。

Svenja Flögel, Miriam Strater, Dietmar Fischer, Dirk Gründemann
{"title":"少突胶质细胞中的肌酸外排转运体。","authors":"Svenja Flögel, Miriam Strater, Dietmar Fischer, Dirk Gründemann","doi":"10.1111/febs.17382","DOIUrl":null,"url":null,"abstract":"<p><p>Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons. Neuronal uptake is mediated by SLC6A8. However, it is still unknown how creatine is released from the producing cells. Here, we investigated the function of the transporter SLC22A15, which exhibits strikingly high amino acid sequence conservation. The release of substrates from 293 cells via heterologously expressed human and rat SLC22A15 was analyzed by mass spectrometry. A number of zwitterions were identified as substrates, with similar efflux transport efficiencies. However, in absolute numbers, the efflux of creatine far outweighed all other substrates. In contrast to the permanent creatine efflux mediated by SLC16A12 and SLC16A9, SLC22A15 was, by default, completely inactive, thereby preventing continuous creatine loss from producing cells. External substrates such as guanidinoacetic acid, GABA, or MPP<sup>+</sup> trigger creatine release through a one-to-one exchange. Human and mouse mRNA profiles indicate that SLC22A15 expression is highest in oligodendrocytes and bone marrow. Single-cell RNA sequencing data substantiate the hypothesis that SLC22A15 depends on high intracellular creatine concentrations: high SLC22A15 counts, as in oligodendrocytes and macrophages, correlate with high counts of the creatine synthesis enzymes AGAT and GAMT in both humans and mice, whereas in proximal tubular cells and hepatocytes, AGAT counts are high, but SLC22A15 is absent. Our findings establish SLC22A15 as the pivotal transporter for controlled creatine release from oligodendrocytes, filling a critical gap in understanding creatine metabolism in the brain.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A creatine efflux transporter in oligodendrocytes.\",\"authors\":\"Svenja Flögel, Miriam Strater, Dietmar Fischer, Dirk Gründemann\",\"doi\":\"10.1111/febs.17382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons. Neuronal uptake is mediated by SLC6A8. However, it is still unknown how creatine is released from the producing cells. Here, we investigated the function of the transporter SLC22A15, which exhibits strikingly high amino acid sequence conservation. The release of substrates from 293 cells via heterologously expressed human and rat SLC22A15 was analyzed by mass spectrometry. A number of zwitterions were identified as substrates, with similar efflux transport efficiencies. However, in absolute numbers, the efflux of creatine far outweighed all other substrates. In contrast to the permanent creatine efflux mediated by SLC16A12 and SLC16A9, SLC22A15 was, by default, completely inactive, thereby preventing continuous creatine loss from producing cells. External substrates such as guanidinoacetic acid, GABA, or MPP<sup>+</sup> trigger creatine release through a one-to-one exchange. Human and mouse mRNA profiles indicate that SLC22A15 expression is highest in oligodendrocytes and bone marrow. Single-cell RNA sequencing data substantiate the hypothesis that SLC22A15 depends on high intracellular creatine concentrations: high SLC22A15 counts, as in oligodendrocytes and macrophages, correlate with high counts of the creatine synthesis enzymes AGAT and GAMT in both humans and mice, whereas in proximal tubular cells and hepatocytes, AGAT counts are high, but SLC22A15 is absent. Our findings establish SLC22A15 as the pivotal transporter for controlled creatine release from oligodendrocytes, filling a critical gap in understanding creatine metabolism in the brain.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.17382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌酸对高耗能细胞的ATP再生至关重要。肌酸缺乏会导致严重的神经发育障碍。在大脑中,肌酸由少突胶质细胞局部合成,供应邻近的神经元。神经元摄取是由SLC6A8介导的。然而,肌酸是如何从产生肌酸的细胞中释放出来的仍然是未知的。在这里,我们研究了转运体SLC22A15的功能,它表现出惊人的高氨基酸序列保守性。质谱分析了人与大鼠异源表达SLC22A15对293细胞释放底物的影响。许多两性离子被确定为底物,具有相似的外排运输效率。然而,在绝对数量上,肌酸的外排远远超过所有其他底物。与SLC16A12和SLC16A9介导的永久肌酸外排相反,SLC22A15在默认情况下是完全失活的,从而防止了细胞产生肌酸的持续损失。外部底物如胍基乙酸、GABA或MPP+通过一对一交换触发肌酸释放。人和小鼠mRNA谱显示,SLC22A15在少突胶质细胞和骨髓中的表达最高。单细胞RNA测序数据证实了SLC22A15依赖于高细胞内肌酸浓度的假设:高SLC22A15计数,如在少突胶质细胞和巨噬细胞中,与人类和小鼠的高肌酸合成酶AGAT和GAMT计数相关,而在近端小管细胞和肝细胞中,AGAT计数高,但SLC22A15缺失。我们的研究结果表明SLC22A15是控制少突胶质细胞释放肌酸的关键转运体,填补了理解脑肌酸代谢的关键空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A creatine efflux transporter in oligodendrocytes.

Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons. Neuronal uptake is mediated by SLC6A8. However, it is still unknown how creatine is released from the producing cells. Here, we investigated the function of the transporter SLC22A15, which exhibits strikingly high amino acid sequence conservation. The release of substrates from 293 cells via heterologously expressed human and rat SLC22A15 was analyzed by mass spectrometry. A number of zwitterions were identified as substrates, with similar efflux transport efficiencies. However, in absolute numbers, the efflux of creatine far outweighed all other substrates. In contrast to the permanent creatine efflux mediated by SLC16A12 and SLC16A9, SLC22A15 was, by default, completely inactive, thereby preventing continuous creatine loss from producing cells. External substrates such as guanidinoacetic acid, GABA, or MPP+ trigger creatine release through a one-to-one exchange. Human and mouse mRNA profiles indicate that SLC22A15 expression is highest in oligodendrocytes and bone marrow. Single-cell RNA sequencing data substantiate the hypothesis that SLC22A15 depends on high intracellular creatine concentrations: high SLC22A15 counts, as in oligodendrocytes and macrophages, correlate with high counts of the creatine synthesis enzymes AGAT and GAMT in both humans and mice, whereas in proximal tubular cells and hepatocytes, AGAT counts are high, but SLC22A15 is absent. Our findings establish SLC22A15 as the pivotal transporter for controlled creatine release from oligodendrocytes, filling a critical gap in understanding creatine metabolism in the brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CryoEM and crystal structure analyses reveal the indirect role played by Trp89 in glutamate dehydrogenase enzymatic reactions. Words of advice for young scientists in developing countries. A cellular model of TDP-43 induces phosphorylated TDP-43 aggregation with distinct changes in solubility and autophagy dysregulation. Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans. Sex-related changes in lactate dehydrogenase A expression differently impact the immune response in melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1