通过心脏磁共振成像的信息传递,释放心电图的诊断潜力。

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-01-04 DOI:10.1016/j.media.2024.103451
Özgün Turgut, Philip Müller, Paul Hager, Suprosanna Shit, Sophie Starck, Martin J Menten, Eimo Martens, Daniel Rueckert
{"title":"通过心脏磁共振成像的信息传递,释放心电图的诊断潜力。","authors":"Özgün Turgut, Philip Müller, Paul Hager, Suprosanna Shit, Sophie Starck, Martin J Menten, Eimo Martens, Daniel Rueckert","doi":"10.1016/j.media.2024.103451","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19% for risk prediction and 27.59% for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103451"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging.\",\"authors\":\"Özgün Turgut, Philip Müller, Paul Hager, Suprosanna Shit, Sophie Starck, Martin J Menten, Eimo Martens, Daniel Rueckert\",\"doi\":\"10.1016/j.media.2024.103451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19% for risk prediction and 27.59% for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.</p>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"101 \",\"pages\":\"103451\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2024.103451\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103451","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(CVD)可以通过各种诊断方式进行诊断。心电图(ECG)是一种具有成本效益且广泛可用的诊断辅助手段,可提供心脏的功能信息。然而,其分类和空间定位CVD的能力是有限的。相比之下,心脏磁共振(CMR)成像提供了心脏的详细结构信息,从而使CVD的循证诊断成为可能,但扫描时间长和成本高限制了其在临床常规中的应用。在这项工作中,我们提出了一种仅从ECG进行成本效益和全面心脏筛查的深度学习策略。我们的方法结合了多模态对比学习和屏蔽数据建模,将特定领域的信息从CMR成像转移到ECG表征。在使用40,044名英国生物银行受试者数据的广泛实验中,我们证明了我们的方法在CVD受试者特定风险预测和仅使用ECG数据预测心脏表型方面的实用性和通用性。具体来说,我们的新多模态预训练范式在风险预测方面提高了12.19%,在表型预测方面提高了27.59%。在定性分析中,我们证明了我们学习到的心电表征包含了来自CMR图像感兴趣区域的信息。我们的整个管道都可以在https://github.com/oetu/MMCL-ECG-CMR上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging.

Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19% for risk prediction and 27.59% for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1