Juan De Los Santos-Jiménez, José A Campos-Sandoval, Tracy Rosales, Bookyung Ko, Francisco J Alonso, Javier Márquez, Ralph J DeBerardinis, José M Matés
{"title":"谷氨酰胺酶-2表达诱导胶质母细胞瘤细胞代谢变化并调节丙酮酸脱氢酶活性。","authors":"Juan De Los Santos-Jiménez, José A Campos-Sandoval, Tracy Rosales, Bookyung Ko, Francisco J Alonso, Javier Márquez, Ralph J DeBerardinis, José M Matés","doi":"10.3390/ijms26010427","DOIUrl":null,"url":null,"abstract":"<p><p>Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor. Glioblastoma cells usually lack GLS2 while they express high GLS. We investigated how GLS2 expression modifies the metabolism of glioblastoma cells, looking for changes that may explain GLS2's potential tumour suppressive role. We developed LN-229 glioblastoma cells stably expressing GLS2 and performed isotope tracing using U-<sup>13</sup>C-glutamine and metabolomic quantification to analyze metabolic changes. Treatment with GLS inhibitor CB-839 was also included to concomitantly inhibit endogenous GLS. GLS2 overexpression resulted in extensive metabolic changes, altering the TCA cycle by upregulating part of the cycle but blocking the synthesis of the 6-carbon intermediates from acetyl-CoA. Expression of GLS2 caused downregulation of PDH activity through phosphorylation of S293 of PDHA1. GLS2 also altered nucleotide levels and induced the accumulation of methylated metabolites and S-adenosyl methionine. These changes suggest that GLS2 may be a key regulator linking glutamine and glucose metabolism, also impacting nucleotides and epigenetics. Future research should ascertain the mechanisms involved and the generalizability of these findings in cancer or physiological conditions.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glutaminase-2 Expression Induces Metabolic Changes and Regulates Pyruvate Dehydrogenase Activity in Glioblastoma Cells.\",\"authors\":\"Juan De Los Santos-Jiménez, José A Campos-Sandoval, Tracy Rosales, Bookyung Ko, Francisco J Alonso, Javier Márquez, Ralph J DeBerardinis, José M Matés\",\"doi\":\"10.3390/ijms26010427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor. Glioblastoma cells usually lack GLS2 while they express high GLS. We investigated how GLS2 expression modifies the metabolism of glioblastoma cells, looking for changes that may explain GLS2's potential tumour suppressive role. We developed LN-229 glioblastoma cells stably expressing GLS2 and performed isotope tracing using U-<sup>13</sup>C-glutamine and metabolomic quantification to analyze metabolic changes. Treatment with GLS inhibitor CB-839 was also included to concomitantly inhibit endogenous GLS. GLS2 overexpression resulted in extensive metabolic changes, altering the TCA cycle by upregulating part of the cycle but blocking the synthesis of the 6-carbon intermediates from acetyl-CoA. Expression of GLS2 caused downregulation of PDH activity through phosphorylation of S293 of PDHA1. GLS2 also altered nucleotide levels and induced the accumulation of methylated metabolites and S-adenosyl methionine. These changes suggest that GLS2 may be a key regulator linking glutamine and glucose metabolism, also impacting nucleotides and epigenetics. Future research should ascertain the mechanisms involved and the generalizability of these findings in cancer or physiological conditions.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26010427\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26010427","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glutaminase-2 Expression Induces Metabolic Changes and Regulates Pyruvate Dehydrogenase Activity in Glioblastoma Cells.
Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor. Glioblastoma cells usually lack GLS2 while they express high GLS. We investigated how GLS2 expression modifies the metabolism of glioblastoma cells, looking for changes that may explain GLS2's potential tumour suppressive role. We developed LN-229 glioblastoma cells stably expressing GLS2 and performed isotope tracing using U-13C-glutamine and metabolomic quantification to analyze metabolic changes. Treatment with GLS inhibitor CB-839 was also included to concomitantly inhibit endogenous GLS. GLS2 overexpression resulted in extensive metabolic changes, altering the TCA cycle by upregulating part of the cycle but blocking the synthesis of the 6-carbon intermediates from acetyl-CoA. Expression of GLS2 caused downregulation of PDH activity through phosphorylation of S293 of PDHA1. GLS2 also altered nucleotide levels and induced the accumulation of methylated metabolites and S-adenosyl methionine. These changes suggest that GLS2 may be a key regulator linking glutamine and glucose metabolism, also impacting nucleotides and epigenetics. Future research should ascertain the mechanisms involved and the generalizability of these findings in cancer or physiological conditions.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).