{"title":"wtap介导的TRAIL-DR4修饰m6A抑制MH7A细胞凋亡","authors":"Xiaoya Cui, Fengxia Xu, Xue Pang, Chang Fan, Hui Jiang","doi":"10.1111/1756-185X.70065","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia. However, little is known about the precise role of WTAP in RA. This study investigated the role of the WTAP-mediated m6A modification of TNF-related apoptosis-inducing ligand death receptor 4 (TRAIL-DR4) in RA.</p><p><strong>Method: </strong>Methyltransferase WTAP overexpression plasmids and small interfering RNAs were constructed and transfected into MH7A cells. Immunofluorescence (IF) staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot were used to detect changes in the expression of WTAP, the B-cell lymphoma 2 (BCL2) gene family, BCL2-associated X (BAX) and TRAIL-DR4 expression, and the effects of WTAP overexpression on cell viability, cell cycle, apoptosis, and proliferation were assessed by a cell counting kit-8 (CCK-8), flow cytometry, and transmission electron microscopy (TEM). The m6A modification of TRAIL-DR4 was verified by m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and its stability was assessed by an actinomycin D assay.</p><p><strong>Results: </strong>Overexpression of WTAP not only increased the levels of WTAP and BCL2, and decreased the levels of BAX and TRAIL-DR4, but also significantly inhibited MH7A cell apoptosis and promoted cell viability and proliferation, while WTAP silencing led to the opposite trend. The SRAMP online database predicted that TRAIL-DR4 has multiple potential methylation-binding sites, and fluorescence in situ hybridization (FISH) combined with IF showed that WTAP and TRAIL-DR4 were mainly expressed in both the nucleus and cytoplasm. MeRIP-qPCR and actinomycin D analysis experiments revealed that WTAP could promote the m6A level of TRAIL-DR4, decrease the stability of TRAIL-DR4 mRNA, and subsequently inhibit apoptosis.</p><p><strong>Conclusion: </strong>This study suggests that WTAP-mediated m6A modification of TRAIL-DR4 suppresses MH7A cell apoptosis. This discovery offers a new focus and avenue for the clinical treatment of RA, while also extending our understanding of the pathophysiology of RA from the standpoint of m6A alteration.</p>","PeriodicalId":14330,"journal":{"name":"International Journal of Rheumatic Diseases","volume":"28 1","pages":"e70065"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WTAP-Mediated m6A Modification of TRAIL-DR4 Suppresses MH7A Cell Apoptosis.\",\"authors\":\"Xiaoya Cui, Fengxia Xu, Xue Pang, Chang Fan, Hui Jiang\",\"doi\":\"10.1111/1756-185X.70065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia. However, little is known about the precise role of WTAP in RA. This study investigated the role of the WTAP-mediated m6A modification of TNF-related apoptosis-inducing ligand death receptor 4 (TRAIL-DR4) in RA.</p><p><strong>Method: </strong>Methyltransferase WTAP overexpression plasmids and small interfering RNAs were constructed and transfected into MH7A cells. Immunofluorescence (IF) staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot were used to detect changes in the expression of WTAP, the B-cell lymphoma 2 (BCL2) gene family, BCL2-associated X (BAX) and TRAIL-DR4 expression, and the effects of WTAP overexpression on cell viability, cell cycle, apoptosis, and proliferation were assessed by a cell counting kit-8 (CCK-8), flow cytometry, and transmission electron microscopy (TEM). The m6A modification of TRAIL-DR4 was verified by m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and its stability was assessed by an actinomycin D assay.</p><p><strong>Results: </strong>Overexpression of WTAP not only increased the levels of WTAP and BCL2, and decreased the levels of BAX and TRAIL-DR4, but also significantly inhibited MH7A cell apoptosis and promoted cell viability and proliferation, while WTAP silencing led to the opposite trend. The SRAMP online database predicted that TRAIL-DR4 has multiple potential methylation-binding sites, and fluorescence in situ hybridization (FISH) combined with IF showed that WTAP and TRAIL-DR4 were mainly expressed in both the nucleus and cytoplasm. MeRIP-qPCR and actinomycin D analysis experiments revealed that WTAP could promote the m6A level of TRAIL-DR4, decrease the stability of TRAIL-DR4 mRNA, and subsequently inhibit apoptosis.</p><p><strong>Conclusion: </strong>This study suggests that WTAP-mediated m6A modification of TRAIL-DR4 suppresses MH7A cell apoptosis. This discovery offers a new focus and avenue for the clinical treatment of RA, while also extending our understanding of the pathophysiology of RA from the standpoint of m6A alteration.</p>\",\"PeriodicalId\":14330,\"journal\":{\"name\":\"International Journal of Rheumatic Diseases\",\"volume\":\"28 1\",\"pages\":\"e70065\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rheumatic Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1756-185X.70065\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1756-185X.70065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
WTAP-Mediated m6A Modification of TRAIL-DR4 Suppresses MH7A Cell Apoptosis.
Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia. However, little is known about the precise role of WTAP in RA. This study investigated the role of the WTAP-mediated m6A modification of TNF-related apoptosis-inducing ligand death receptor 4 (TRAIL-DR4) in RA.
Method: Methyltransferase WTAP overexpression plasmids and small interfering RNAs were constructed and transfected into MH7A cells. Immunofluorescence (IF) staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot were used to detect changes in the expression of WTAP, the B-cell lymphoma 2 (BCL2) gene family, BCL2-associated X (BAX) and TRAIL-DR4 expression, and the effects of WTAP overexpression on cell viability, cell cycle, apoptosis, and proliferation were assessed by a cell counting kit-8 (CCK-8), flow cytometry, and transmission electron microscopy (TEM). The m6A modification of TRAIL-DR4 was verified by m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and its stability was assessed by an actinomycin D assay.
Results: Overexpression of WTAP not only increased the levels of WTAP and BCL2, and decreased the levels of BAX and TRAIL-DR4, but also significantly inhibited MH7A cell apoptosis and promoted cell viability and proliferation, while WTAP silencing led to the opposite trend. The SRAMP online database predicted that TRAIL-DR4 has multiple potential methylation-binding sites, and fluorescence in situ hybridization (FISH) combined with IF showed that WTAP and TRAIL-DR4 were mainly expressed in both the nucleus and cytoplasm. MeRIP-qPCR and actinomycin D analysis experiments revealed that WTAP could promote the m6A level of TRAIL-DR4, decrease the stability of TRAIL-DR4 mRNA, and subsequently inhibit apoptosis.
Conclusion: This study suggests that WTAP-mediated m6A modification of TRAIL-DR4 suppresses MH7A cell apoptosis. This discovery offers a new focus and avenue for the clinical treatment of RA, while also extending our understanding of the pathophysiology of RA from the standpoint of m6A alteration.
期刊介绍:
The International Journal of Rheumatic Diseases (formerly APLAR Journal of Rheumatology) is the official journal of the Asia Pacific League of Associations for Rheumatology. The Journal accepts original articles on clinical or experimental research pertinent to the rheumatic diseases, work on connective tissue diseases and other immune and allergic disorders. The acceptance criteria for all papers are the quality and originality of the research and its significance to our readership. Except where otherwise stated, manuscripts are peer reviewed by two anonymous reviewers and the Editor.