从x线片生成合成计算机层析成像的策略:范围综述。

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-01-04 DOI:10.1016/j.media.2025.103454
Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes
{"title":"从x线片生成合成计算机层析成像的策略:范围综述。","authors":"Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes","doi":"10.1016/j.media.2025.103454","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.</p><p><strong>Methods: </strong>A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.</p><p><strong>Results: </strong>76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.</p><p><strong>Conclusion: </strong>This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103454"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review.\",\"authors\":\"Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes\",\"doi\":\"10.1016/j.media.2025.103454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.</p><p><strong>Methods: </strong>A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.</p><p><strong>Results: </strong>76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.</p><p><strong>Conclusion: </strong>This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.</p>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"101 \",\"pages\":\"103454\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2025.103454\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2025.103454","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:断层医学成像的进步通过提供详细的内部结构3D可视化,彻底改变了诊断和治疗监测。尽管计算机断层扫描(CT)具有重要价值,但诸如高辐射剂量和成本障碍等挑战限制了其可及性,特别是在低收入和中等收入国家。认识到放射成像在重建CT图像方面的潜力,本综述旨在通过检查当前的方法,探索从2D x线片合成3D CT样图像的新兴领域。方法:根据PRISMA-SR指南进行范围审查。文章的资格标准包括截止到2024年9月9日发表的全文文章,研究从2D双平面或四投影x射线图像合成3D CT图像的方法。符合条件的文章来源于PubMed MEDLINE、Embase和arXiv。结果:共纳入76项研究。大多数(50.8%,n = 30)发表于2010年至2020年(38.2%,n = 29)和2020年以后(36.8%,n = 28),其中欧洲(40.8%,n = 31)、北美(26.3%,n = 20)和亚洲(32.9%,n = 25)机构是主要贡献者。解剖区域各不相同,17.1% (n = 13)的研究没有使用临床数据。此外,研究集中在胸部(25%,n = 19)、脊柱和椎骨(17.1%,n = 13)、冠状动脉(10.5%,n = 8)和颅结构(10.5%,n = 8)以及其他解剖区域。卷积神经网络(CNN) (19.7%, n = 15)、生成对抗网络(21.1%,n = 16)和统计形状模型(15.8%,n = 12)成为应用最多的方法。有限数量的研究包括探索条件扩散模型、迭代重建算法、统计形状模型和数字断层合成的使用。结论:本文综述了合成成像的当前策略和挑战。从2D x光片发展出3D CT样成像技术,可以降低辐射风险,同时解决阻碍全球获得CT成像的财务和后勤障碍。尽管最初的结果很有希望,但该领域遇到了各种方法的挑战,并且经常缺乏适当的验证,需要进一步的研究来确定合成成像的临床作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review.

Background: Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.

Methods: A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.

Results: 76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.

Conclusion: This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1