Shuwei Zhang , Chan Wang , Jianxing Liu , Liu Liu , Lin Miao , Haowei Wang , Yunqing Tian , Hao Cheng , Juan Li , Xiaofeng Zeng
{"title":"新型miR_146-Tfdp2轴拮抗甲基醚诱导的树鼩神经元凋亡和细胞周期异常。","authors":"Shuwei Zhang , Chan Wang , Jianxing Liu , Liu Liu , Lin Miao , Haowei Wang , Yunqing Tian , Hao Cheng , Juan Li , Xiaofeng Zeng","doi":"10.1016/j.neuropharm.2025.110300","DOIUrl":null,"url":null,"abstract":"<div><div>Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear. We found that the novel miRNA 146 (miR_146) was downregulated in METH-induced apoptosis and cell cycle arrest in tree shrew primary neurons, while the expression of its target gene <em>Tfdp2</em> was increased after METH exposure. Overexpression of miR_146 or silencing of <em>Tfdp2</em> significantly alleviated METH-induced cell cycle arrest and apoptosis in primary tree shrew neurons. These findings provide new insights into the role of the miR_146-<em>Tfdp2</em> axis in METH-induced neurotoxic injury and offer a theoretical basis for miR_146 as potential therapeutic targets in drug abuse.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"267 ","pages":"Article 110300"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew\",\"authors\":\"Shuwei Zhang , Chan Wang , Jianxing Liu , Liu Liu , Lin Miao , Haowei Wang , Yunqing Tian , Hao Cheng , Juan Li , Xiaofeng Zeng\",\"doi\":\"10.1016/j.neuropharm.2025.110300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear. We found that the novel miRNA 146 (miR_146) was downregulated in METH-induced apoptosis and cell cycle arrest in tree shrew primary neurons, while the expression of its target gene <em>Tfdp2</em> was increased after METH exposure. Overexpression of miR_146 or silencing of <em>Tfdp2</em> significantly alleviated METH-induced cell cycle arrest and apoptosis in primary tree shrew neurons. These findings provide new insights into the role of the miR_146-<em>Tfdp2</em> axis in METH-induced neurotoxic injury and offer a theoretical basis for miR_146 as potential therapeutic targets in drug abuse.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"267 \",\"pages\":\"Article 110300\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390825000061\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825000061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew
Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear. We found that the novel miRNA 146 (miR_146) was downregulated in METH-induced apoptosis and cell cycle arrest in tree shrew primary neurons, while the expression of its target gene Tfdp2 was increased after METH exposure. Overexpression of miR_146 or silencing of Tfdp2 significantly alleviated METH-induced cell cycle arrest and apoptosis in primary tree shrew neurons. These findings provide new insights into the role of the miR_146-Tfdp2 axis in METH-induced neurotoxic injury and offer a theoretical basis for miR_146 as potential therapeutic targets in drug abuse.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).