{"title":"雷帕霉素联合吉西他滨联合紫杉醇对胰腺癌肿瘤生长的抑制作用。","authors":"Yuri Jobu, Miki Nishigawa, Kaoru Furihata, Mutsuo Furihata, Kazushige Uchida, Keisuke Taniuchi","doi":"10.1007/s13577-024-01165-9","DOIUrl":null,"url":null,"abstract":"<p><p>We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer. In vitro assays showed that rapamycin strongly inhibited cell invasion, while gemcitabine, 5-fluorouracil, and gemcitabine plus paclitaxel primarily inhibited cell proliferation with minimal effects on invasion. In vivo mouse experiments demonstrated that rapamycin exhibited superior antitumor activity to S-1 (a metabolically activated prodrug of 5-fluorouracil) and another mTOR inhibitor, everolimus, while its efficacy was similar to that of gemcitabine plus paclitaxel (which was used instead of nab-paclitaxel due to concerns about allergic reactions in mice to human albumin) in a mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Furthermore, the combination of rapamycin with gemcitabine plus paclitaxel exerted synergistic inhibitory effects on the growth of pancreatic cancer tumors. Although the inhibition of tumor growth was significantly stronger in everolimus-treated mice than in control mice, there were no additive anti-growth effects when combined with gemcitabine plus paclitaxel. The present results suggest that the combination of rapamycin with gemcitabine plus paclitaxel achieved the greatest reduction in tumor volumes in the mouse xenograft model and, thus, has significant clinical promise.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"44"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors.\",\"authors\":\"Yuri Jobu, Miki Nishigawa, Kaoru Furihata, Mutsuo Furihata, Kazushige Uchida, Keisuke Taniuchi\",\"doi\":\"10.1007/s13577-024-01165-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer. In vitro assays showed that rapamycin strongly inhibited cell invasion, while gemcitabine, 5-fluorouracil, and gemcitabine plus paclitaxel primarily inhibited cell proliferation with minimal effects on invasion. In vivo mouse experiments demonstrated that rapamycin exhibited superior antitumor activity to S-1 (a metabolically activated prodrug of 5-fluorouracil) and another mTOR inhibitor, everolimus, while its efficacy was similar to that of gemcitabine plus paclitaxel (which was used instead of nab-paclitaxel due to concerns about allergic reactions in mice to human albumin) in a mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Furthermore, the combination of rapamycin with gemcitabine plus paclitaxel exerted synergistic inhibitory effects on the growth of pancreatic cancer tumors. Although the inhibition of tumor growth was significantly stronger in everolimus-treated mice than in control mice, there were no additive anti-growth effects when combined with gemcitabine plus paclitaxel. The present results suggest that the combination of rapamycin with gemcitabine plus paclitaxel achieved the greatest reduction in tumor volumes in the mouse xenograft model and, thus, has significant clinical promise.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 2\",\"pages\":\"44\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01165-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01165-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors.
We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer. In vitro assays showed that rapamycin strongly inhibited cell invasion, while gemcitabine, 5-fluorouracil, and gemcitabine plus paclitaxel primarily inhibited cell proliferation with minimal effects on invasion. In vivo mouse experiments demonstrated that rapamycin exhibited superior antitumor activity to S-1 (a metabolically activated prodrug of 5-fluorouracil) and another mTOR inhibitor, everolimus, while its efficacy was similar to that of gemcitabine plus paclitaxel (which was used instead of nab-paclitaxel due to concerns about allergic reactions in mice to human albumin) in a mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Furthermore, the combination of rapamycin with gemcitabine plus paclitaxel exerted synergistic inhibitory effects on the growth of pancreatic cancer tumors. Although the inhibition of tumor growth was significantly stronger in everolimus-treated mice than in control mice, there were no additive anti-growth effects when combined with gemcitabine plus paclitaxel. The present results suggest that the combination of rapamycin with gemcitabine plus paclitaxel achieved the greatest reduction in tumor volumes in the mouse xenograft model and, thus, has significant clinical promise.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.