Abdul Wahab , Muhammad Suhail , Tatiana Eggers , Khurram Shehzad , Ozioma Udochukwu Akakuru , Zahoor Ahmad , Zhichao Sun , M. Zubair Iqbal , Xiangdong Kong
{"title":"MRI中游离金属造影剂的创新视角:增强成像效能和人工智能驱动的未来诊断。","authors":"Abdul Wahab , Muhammad Suhail , Tatiana Eggers , Khurram Shehzad , Ozioma Udochukwu Akakuru , Zahoor Ahmad , Zhichao Sun , M. Zubair Iqbal , Xiangdong Kong","doi":"10.1016/j.actbio.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, <sup>19</sup>F CAs, and HP <sup>13</sup>C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. <sup>19</sup>F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP <sup>13</sup>C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs.</div></div><div><h3>Statement of significance</h3><div>The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP <sup>13</sup>C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"193 ","pages":"Pages 83-106"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics\",\"authors\":\"Abdul Wahab , Muhammad Suhail , Tatiana Eggers , Khurram Shehzad , Ozioma Udochukwu Akakuru , Zahoor Ahmad , Zhichao Sun , M. Zubair Iqbal , Xiangdong Kong\",\"doi\":\"10.1016/j.actbio.2025.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, <sup>19</sup>F CAs, and HP <sup>13</sup>C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. <sup>19</sup>F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP <sup>13</sup>C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs.</div></div><div><h3>Statement of significance</h3><div>The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP <sup>13</sup>C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"193 \",\"pages\":\"Pages 83-106\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125000145\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, 19F CAs, and HP 13C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. 19F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP 13C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs.
Statement of significance
The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP 13C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.