Haozhe Xu, Jian Wang, Qianjin Feng, Yu Zhang, Zhenyuan Ning
{"title":"不完全多模态神经图像在阿尔茨海默病诊断中的领域特异性信息保存","authors":"Haozhe Xu, Jian Wang, Qianjin Feng, Yu Zhang, Zhenyuan Ning","doi":"10.1016/j.media.2024.103448","DOIUrl":null,"url":null,"abstract":"Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages\",\"authors\":\"Haozhe Xu, Jian Wang, Qianjin Feng, Yu Zhang, Zhenyuan Ning\",\"doi\":\"10.1016/j.media.2024.103448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2024.103448\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103448","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.