Abdulsatar Mohammad, Benoît Ly Vu, Joseph Ly Vu, Elise Bizouerne, Julia Buitink, Olivier Leprince
{"title":"收获前和收获后温度影响MAGIC基因型番茄种子萌发对超适温度的响应","authors":"Abdulsatar Mohammad, Benoît Ly Vu, Joseph Ly Vu, Elise Bizouerne, Julia Buitink, Olivier Leprince","doi":"10.1017/s0960258524000217","DOIUrl":null,"url":null,"abstract":"<p>Seeds rely on temperature to adjust their germination timing by modulating primary and secondary dormancy. The knowledge regarding an intraspecific variation in the germination responses to supra-optimal temperatures during imbibition within the <span>Solanum lycopersicon</span> species and its relation with pre- and post-harvest environments is limited. Here, we studied the impact of imbibition at 35°C in 17 genotypes selected from a multiparent advanced generation intercross (MAGIC) population. We discovered a high genetic variability in the germination responses to heat, leading to thermotolerance, thermoinhibition or thermodormancy with different depths. While thermodormancy appeared more profound than primary dormancy, there was no correlation between the deepness of primary and thermodormancy. Post-harvest treatments influenced considerably germination at supra-optimal temperatures. Dry storage beyond the apparent loss of primary dormancy led to an increased proportion of thermotolerant or thermoinhibited seeds at the expense of thermodormancy in a genotype-dependent manner, thereby revealing cryptic genetic variation. Prolonged cold imbibition also led to increased thermodormancy in genotypes that produced thermotolerant and thermoinhibited seeds. The thermal history before and after flowering influenced primary dormancy and the germination response to heat during imbibition in a genotype-dependent manner, with high temperatures leading to increased thermotolerance or thermoinhibition at the expense of thermodormancy, suggesting transgenerational plasticity despite the domestication of the species. The high potential of the MAGIC population for quantitative trait loci mapping and causal polymorphism identification will be helpful in deciphering the regulatory mechanisms that lead to the plasticity of thermoinhibition or thermodormancy, as well as their connection to the parental environment.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"20 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre- and post-harvest temperatures influence the germination response to supra-optimal temperature in contrasting tomato (Solanum lycopersicum) MAGIC genotypes\",\"authors\":\"Abdulsatar Mohammad, Benoît Ly Vu, Joseph Ly Vu, Elise Bizouerne, Julia Buitink, Olivier Leprince\",\"doi\":\"10.1017/s0960258524000217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seeds rely on temperature to adjust their germination timing by modulating primary and secondary dormancy. The knowledge regarding an intraspecific variation in the germination responses to supra-optimal temperatures during imbibition within the <span>Solanum lycopersicon</span> species and its relation with pre- and post-harvest environments is limited. Here, we studied the impact of imbibition at 35°C in 17 genotypes selected from a multiparent advanced generation intercross (MAGIC) population. We discovered a high genetic variability in the germination responses to heat, leading to thermotolerance, thermoinhibition or thermodormancy with different depths. While thermodormancy appeared more profound than primary dormancy, there was no correlation between the deepness of primary and thermodormancy. Post-harvest treatments influenced considerably germination at supra-optimal temperatures. Dry storage beyond the apparent loss of primary dormancy led to an increased proportion of thermotolerant or thermoinhibited seeds at the expense of thermodormancy in a genotype-dependent manner, thereby revealing cryptic genetic variation. Prolonged cold imbibition also led to increased thermodormancy in genotypes that produced thermotolerant and thermoinhibited seeds. The thermal history before and after flowering influenced primary dormancy and the germination response to heat during imbibition in a genotype-dependent manner, with high temperatures leading to increased thermotolerance or thermoinhibition at the expense of thermodormancy, suggesting transgenerational plasticity despite the domestication of the species. The high potential of the MAGIC population for quantitative trait loci mapping and causal polymorphism identification will be helpful in deciphering the regulatory mechanisms that lead to the plasticity of thermoinhibition or thermodormancy, as well as their connection to the parental environment.</p>\",\"PeriodicalId\":21711,\"journal\":{\"name\":\"Seed Science Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seed Science Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960258524000217\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000217","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Pre- and post-harvest temperatures influence the germination response to supra-optimal temperature in contrasting tomato (Solanum lycopersicum) MAGIC genotypes
Seeds rely on temperature to adjust their germination timing by modulating primary and secondary dormancy. The knowledge regarding an intraspecific variation in the germination responses to supra-optimal temperatures during imbibition within the Solanum lycopersicon species and its relation with pre- and post-harvest environments is limited. Here, we studied the impact of imbibition at 35°C in 17 genotypes selected from a multiparent advanced generation intercross (MAGIC) population. We discovered a high genetic variability in the germination responses to heat, leading to thermotolerance, thermoinhibition or thermodormancy with different depths. While thermodormancy appeared more profound than primary dormancy, there was no correlation between the deepness of primary and thermodormancy. Post-harvest treatments influenced considerably germination at supra-optimal temperatures. Dry storage beyond the apparent loss of primary dormancy led to an increased proportion of thermotolerant or thermoinhibited seeds at the expense of thermodormancy in a genotype-dependent manner, thereby revealing cryptic genetic variation. Prolonged cold imbibition also led to increased thermodormancy in genotypes that produced thermotolerant and thermoinhibited seeds. The thermal history before and after flowering influenced primary dormancy and the germination response to heat during imbibition in a genotype-dependent manner, with high temperatures leading to increased thermotolerance or thermoinhibition at the expense of thermodormancy, suggesting transgenerational plasticity despite the domestication of the species. The high potential of the MAGIC population for quantitative trait loci mapping and causal polymorphism identification will be helpful in deciphering the regulatory mechanisms that lead to the plasticity of thermoinhibition or thermodormancy, as well as their connection to the parental environment.
期刊介绍:
Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.