蛋白液滴润湿肌动蛋白丝的分子尺度模拟

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-23 Epub Date: 2025-01-12 DOI:10.1021/acs.jpcb.4c07282
James Andrews, Kimberly Weirich, Ulf D Schiller
{"title":"蛋白液滴润湿肌动蛋白丝的分子尺度模拟","authors":"James Andrews, Kimberly Weirich, Ulf D Schiller","doi":"10.1021/acs.jpcb.4c07282","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks. We perform coarse-grained molecular dynamics simulations to investigate the wetting and spreading of FUS droplets on actin filaments. We employ the Martini model and rescale the protein-protein and protein-actin interactions to tune the interfacial and wetting properties of FUS droplets. By measuring the molecular displacements in the three-phase region, we are able to relate contact angle, contact line velocity, and contact line friction in terms of a linear approximation of molecular kinetic theory. The results show that the rescaled Martini model can be used to study the molecular mechanisms of dynamic wetting at the nanoscale and to obtain quantitative predictions of the contact line friction and contact angles during dynamic wetting.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1109-1121"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets.\",\"authors\":\"James Andrews, Kimberly Weirich, Ulf D Schiller\",\"doi\":\"10.1021/acs.jpcb.4c07282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks. We perform coarse-grained molecular dynamics simulations to investigate the wetting and spreading of FUS droplets on actin filaments. We employ the Martini model and rescale the protein-protein and protein-actin interactions to tune the interfacial and wetting properties of FUS droplets. By measuring the molecular displacements in the three-phase region, we are able to relate contact angle, contact line velocity, and contact line friction in terms of a linear approximation of molecular kinetic theory. The results show that the rescaled Martini model can be used to study the molecular mechanisms of dynamic wetting at the nanoscale and to obtain quantitative predictions of the contact line friction and contact angles during dynamic wetting.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"1109-1121\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c07282\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07282","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

液相分离蛋白可以形成凝聚体,在生物细胞的时空组织中起着重要作用。了解导致蛋白质凝聚物形成的机制及其与其他生物分子的相互作用可能会导致具有定制几何和功能的软材料的加工路线。肉瘤融合蛋白(FUS)是核蛋白形成稳定复合物的一个例子,最近的研究强调了其湿润肌动蛋白丝并将其捆绑成网络的能力。我们进行了粗粒度的分子动力学模拟来研究FUS液滴在肌动蛋白细丝上的润湿和扩散。我们采用Martini模型并重新调整蛋白质-蛋白质和蛋白质-肌动蛋白相互作用,以调整FUS液滴的界面和润湿特性。通过测量三相区域的分子位移,我们能够根据分子动力学理论的线性近似来联系接触角,接触线速度和接触线摩擦。结果表明,该模型可用于研究纳米尺度下动态润湿的分子机理,并可定量预测动态润湿过程中的接触线摩擦和接触角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets.

Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks. We perform coarse-grained molecular dynamics simulations to investigate the wetting and spreading of FUS droplets on actin filaments. We employ the Martini model and rescale the protein-protein and protein-actin interactions to tune the interfacial and wetting properties of FUS droplets. By measuring the molecular displacements in the three-phase region, we are able to relate contact angle, contact line velocity, and contact line friction in terms of a linear approximation of molecular kinetic theory. The results show that the rescaled Martini model can be used to study the molecular mechanisms of dynamic wetting at the nanoscale and to obtain quantitative predictions of the contact line friction and contact angles during dynamic wetting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. Complementary Peptide Interactions Support the Ultra-Rigidity of Polymers of De Novo Designed Click-Functionalized Bundlemers. Ion-Ion Structural Correlation and Dynamics of Water in Aqueous NaCl Solutions with a Wide Range of Concentrations. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. Tale of Three Dithienylethenes: Following the Photocycloreversion with Ultrafast Spectroscopy and Quantum Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1