基于关注多子带深度身份嵌入学习网络的SSVEP脑印识别。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI:10.1007/s11571-024-10192-z
Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong
{"title":"基于关注多子带深度身份嵌入学习网络的SSVEP脑印识别。","authors":"Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong","doi":"10.1007/s11571-024-10192-z","DOIUrl":null,"url":null,"abstract":"<p><p>Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"15"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network.\",\"authors\":\"Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong\",\"doi\":\"10.1007/s11571-024-10192-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"15\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10192-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10192-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑指纹识别技术被认为是一种前景广阔的生物识别技术,但由于脑电信号(如脑电图)的时变性和低信噪比,该技术面临着挑战。稳态视觉诱发电位(SSVEP)具有高信噪比和频率锁定的特点,是一种很有前景的脑纹识别范例。因此,从 SSVEP 脑电信号中提取时间不变的身份信息至关重要。本文提出了一种多子带深度身份嵌入学习网络(Attentive Multi-sub-band Depth Identity Embedding Learning Network),用于稳定的跨时段 SSVEP 脑纹识别。为了解决跨会话期识别准确率低的问题,我们引入了子频段注意力频率机制,该机制整合了 SSVEP 范式的频域相关特性,重点探索深度-频率身份嵌入信息。此外,我们还采用了注意力统计池(Attentive Statistic Pooling)技术,以增强频域特征分布在不同会话中的稳定性。我们在两个多会话 SSVEP 基准数据集上进行了广泛的实验和验证。实验结果表明,在跨会话的 2 秒样本上,我们的方法优于其他先进模型,有望成为多主体生物识别系统的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network.

Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1