Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming
{"title":"具有高自闭症特征的个体表现出半球间脑功能连接模式的改变。","authors":"Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming","doi":"10.1007/s11571-024-10213-x","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"9"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns.\",\"authors\":\"Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming\",\"doi\":\"10.1007/s11571-024-10213-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"9\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10213-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10213-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
具有高自闭症特征的个体在社会交往中遇到挑战,与自闭症患者相似。精确的筛选和有重点的干预措施对改善这一状况有积极作用。功能连接分析可以测量大脑区域之间的信息传递和整合,为这些挑战提供神经生理学的见解。本研究旨在探讨高AT个体的脑网络模式,为筛选和干预决策提供理论支持。在48名参与者的4分钟静息状态(睁眼和闭眼)中收集脑电图数据。采用自闭症谱系商量表将被试分为高智商组(HAT, n = 15)和低智商组(LAT, n = 15)。我们计算了两组的半球间和半球内α相干性。并分析了各生理指标与AQ评分的相关性。结果显示,在闭眼休息状态下,HAT在枕皮质同源半球的α相干性明显低于LAT。此外,AT的程度(AQ分数)与枕叶皮层以及右额叶和左枕叶区域的α相干性之间存在显著的负相关。研究结果表明,高AT个体在枕区表现出较低的连通性,这可能导致处理来自视觉输入的社会信息的能力下降。我们的发现有助于更深入地理解高AT个体的社会挑战的神经基础,为这一人群的筛查和干预策略提供神经生理学特征。
Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns.
Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.