Sezer Özenler, Nataliya Kiriy, Upenyu L Muza, Martin Geisler, Anton Kiriy, Brigitte Voit
{"title":"结合聚合物离子液体的机械稳定聚合物网络,增强固态电解质的导电性。","authors":"Sezer Özenler, Nataliya Kiriy, Upenyu L Muza, Martin Geisler, Anton Kiriy, Brigitte Voit","doi":"10.1080/15685551.2024.2449444","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure. Molecular weights of the PIL samples, ranging from 30 to 40 kDa, were determined using a complimentary combination of thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The aimed for networks were synthesized through the photo-initiated polymerization of a network-forming monomer and a cross-linker, in the presence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a PIL bearing quaternized imidazolium groups. The resulting cross-linked membranes - semi-interpenetrating networks - exhibit substantial mechanical strength, with a Young's modulus of 40-50 MPa, surpassing the threshold for solid-state battery separators, while maintaining high ionic conductivity in the range of 4 × 10<sup>-4</sup> S·cm<sup>-1</sup> at 60°C. Notably, the introduction of oligo(ethylene glycol) moieties into the PIL structure significantly enhances ionic conductivity and allows for incorporation of a larger amount of the lithium salt compared to the alkyl-substituted analogs. Moreover, although cross-linking often impairs ionic transport as a result of restricted segmental mobility of the polymer chains, incorporation into the network of highly conductive linear PILs circumvents this issue. This unique combination of properties positions the developed membranes as promising candidates for application in solid-state lithium batteries, effectively addressing the traditional trade-off in electrolyte design.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"28 1","pages":"35-47"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721619/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes.\",\"authors\":\"Sezer Özenler, Nataliya Kiriy, Upenyu L Muza, Martin Geisler, Anton Kiriy, Brigitte Voit\",\"doi\":\"10.1080/15685551.2024.2449444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure. Molecular weights of the PIL samples, ranging from 30 to 40 kDa, were determined using a complimentary combination of thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The aimed for networks were synthesized through the photo-initiated polymerization of a network-forming monomer and a cross-linker, in the presence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a PIL bearing quaternized imidazolium groups. The resulting cross-linked membranes - semi-interpenetrating networks - exhibit substantial mechanical strength, with a Young's modulus of 40-50 MPa, surpassing the threshold for solid-state battery separators, while maintaining high ionic conductivity in the range of 4 × 10<sup>-4</sup> S·cm<sup>-1</sup> at 60°C. Notably, the introduction of oligo(ethylene glycol) moieties into the PIL structure significantly enhances ionic conductivity and allows for incorporation of a larger amount of the lithium salt compared to the alkyl-substituted analogs. Moreover, although cross-linking often impairs ionic transport as a result of restricted segmental mobility of the polymer chains, incorporation into the network of highly conductive linear PILs circumvents this issue. This unique combination of properties positions the developed membranes as promising candidates for application in solid-state lithium batteries, effectively addressing the traditional trade-off in electrolyte design.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"28 1\",\"pages\":\"35-47\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721619/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2024.2449444\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2449444","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure. Molecular weights of the PIL samples, ranging from 30 to 40 kDa, were determined using a complimentary combination of thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The aimed for networks were synthesized through the photo-initiated polymerization of a network-forming monomer and a cross-linker, in the presence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a PIL bearing quaternized imidazolium groups. The resulting cross-linked membranes - semi-interpenetrating networks - exhibit substantial mechanical strength, with a Young's modulus of 40-50 MPa, surpassing the threshold for solid-state battery separators, while maintaining high ionic conductivity in the range of 4 × 10-4 S·cm-1 at 60°C. Notably, the introduction of oligo(ethylene glycol) moieties into the PIL structure significantly enhances ionic conductivity and allows for incorporation of a larger amount of the lithium salt compared to the alkyl-substituted analogs. Moreover, although cross-linking often impairs ionic transport as a result of restricted segmental mobility of the polymer chains, incorporation into the network of highly conductive linear PILs circumvents this issue. This unique combination of properties positions the developed membranes as promising candidates for application in solid-state lithium batteries, effectively addressing the traditional trade-off in electrolyte design.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications