Ning Zhao, Yi Zhang, Jun Li, Junnan Xu, Lingxia Jiao, Kaidi Hu, Qin Li, Jianlong Li, Aiping Liu, Mingtao Fan, Shuliang Liu
{"title":"酸地酸环杆菌在酸性肉汤和果汁中的适应性反应:重点研究有机酸和温度条件的影响。","authors":"Ning Zhao, Yi Zhang, Jun Li, Junnan Xu, Lingxia Jiao, Kaidi Hu, Qin Li, Jianlong Li, Aiping Liu, Mingtao Fan, Shuliang Liu","doi":"10.1016/j.ijfoodmicro.2025.111058","DOIUrl":null,"url":null,"abstract":"<p><p>Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive. In this work, acid adaptation of A. acidoterrestris in broth acidified with various organic acids and in fruit juices was investigated, while also considering the ambient temperature. Results revealed that acid adaptation (at pH values of 3.0, 3.2, and 3.5, adjusted with malic, tartaric, or citric acids, and at pH 3.5 adjusted with lactic, succinic, or ascorbic acids, for 1 h) enhanced acid resistance (pH = 2.2, 1 h) of A. acidoterrestris, across all tested temperatures (45 °C, 35 °C, 25 °C, and 10 °C). Moreover, heat tolerance (65 °C, 5 min) was improved, except when using tartaric acid. Among acidulants used during adaptation (pH 3.5, 45 °C), succinic acid induced the highest level of acid resistance, followed by lactic, citric, malic, ascorbic, and tartaric acids, in descending order. For heat resistance, the ranking was succinic, citric, tartaric, lactic, ascorbic, and malic acids. Furthermore, acid adaptation in apple or orange juices enhanced heat resistance (65 °C) of A. acidoterrestris, and the induced resistance increased with extension of adaptation period. Adaptive temperatures of 25 °C and 35 °C were more effective in promoting resistance than 10 °C. These findings highlight the importance of considering adaptive responses of A. acidoterrestris to different preservation stresses and acidic juice environments during juice processing.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"430 ","pages":"111058"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive responses of Alicyclobacillus acidoterrestris in acidic broth and fruit juices: Focus on the influences of organic acids and temperature conditions.\",\"authors\":\"Ning Zhao, Yi Zhang, Jun Li, Junnan Xu, Lingxia Jiao, Kaidi Hu, Qin Li, Jianlong Li, Aiping Liu, Mingtao Fan, Shuliang Liu\",\"doi\":\"10.1016/j.ijfoodmicro.2025.111058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive. In this work, acid adaptation of A. acidoterrestris in broth acidified with various organic acids and in fruit juices was investigated, while also considering the ambient temperature. Results revealed that acid adaptation (at pH values of 3.0, 3.2, and 3.5, adjusted with malic, tartaric, or citric acids, and at pH 3.5 adjusted with lactic, succinic, or ascorbic acids, for 1 h) enhanced acid resistance (pH = 2.2, 1 h) of A. acidoterrestris, across all tested temperatures (45 °C, 35 °C, 25 °C, and 10 °C). Moreover, heat tolerance (65 °C, 5 min) was improved, except when using tartaric acid. Among acidulants used during adaptation (pH 3.5, 45 °C), succinic acid induced the highest level of acid resistance, followed by lactic, citric, malic, ascorbic, and tartaric acids, in descending order. For heat resistance, the ranking was succinic, citric, tartaric, lactic, ascorbic, and malic acids. Furthermore, acid adaptation in apple or orange juices enhanced heat resistance (65 °C) of A. acidoterrestris, and the induced resistance increased with extension of adaptation period. Adaptive temperatures of 25 °C and 35 °C were more effective in promoting resistance than 10 °C. These findings highlight the importance of considering adaptive responses of A. acidoterrestris to different preservation stresses and acidic juice environments during juice processing.</p>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"430 \",\"pages\":\"111058\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfoodmicro.2025.111058\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.ijfoodmicro.2025.111058","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Adaptive responses of Alicyclobacillus acidoterrestris in acidic broth and fruit juices: Focus on the influences of organic acids and temperature conditions.
Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive. In this work, acid adaptation of A. acidoterrestris in broth acidified with various organic acids and in fruit juices was investigated, while also considering the ambient temperature. Results revealed that acid adaptation (at pH values of 3.0, 3.2, and 3.5, adjusted with malic, tartaric, or citric acids, and at pH 3.5 adjusted with lactic, succinic, or ascorbic acids, for 1 h) enhanced acid resistance (pH = 2.2, 1 h) of A. acidoterrestris, across all tested temperatures (45 °C, 35 °C, 25 °C, and 10 °C). Moreover, heat tolerance (65 °C, 5 min) was improved, except when using tartaric acid. Among acidulants used during adaptation (pH 3.5, 45 °C), succinic acid induced the highest level of acid resistance, followed by lactic, citric, malic, ascorbic, and tartaric acids, in descending order. For heat resistance, the ranking was succinic, citric, tartaric, lactic, ascorbic, and malic acids. Furthermore, acid adaptation in apple or orange juices enhanced heat resistance (65 °C) of A. acidoterrestris, and the induced resistance increased with extension of adaptation period. Adaptive temperatures of 25 °C and 35 °C were more effective in promoting resistance than 10 °C. These findings highlight the importance of considering adaptive responses of A. acidoterrestris to different preservation stresses and acidic juice environments during juice processing.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.