{"title":"基于机器学习的围绝经期妇女主要心血管不良事件风险预测模型的构建与比较","authors":"Anjing Chen, Xinyue Chang, Xueling Bian, Fangxia Zhang, Shasha Ma, Xiaolin Chen","doi":"10.2147/IJGM.S497416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perimenopausal period is a period of physiological changes in women with signs of ovarian failure, including menopausal transition period and 1 year after menopause. Ovarian function declines in perimenopausal women and lower estrogen levels lead to changes in the function of various organs, which may lead to cardiovascular disease. Major adverse cardiovascular events (MACE) are the combination of clinical events including heart failure, myocardial infarction and other cardiovascular diseases. Therefore, this study explores the factors influencing the occurrence of MACE in perimenopausal women and establishes a prediction model for MACE risk factors using three algorithms, comparing their predictive performance.</p><p><strong>Patients and methods: </strong>A total of 411 perimenopausal women diagnosed with MACE at the Binzhou Medical University Hospital were randomly divided into a training set and a test set following a 7:3 ratio. According to the principle of 10 events per Variable, the training set sample size was sufficient. In the training set, Random Forest (RF) algorithm, backpropagation neural network (BPNN) and Logistic Regression (LR) were used to construct a MACE risk prediction model for perimenopausal women, and the test set was used to verify the model. The prediction performance of the model was evaluated in terms of accuracy, sensitivity, specificity, and area under the subject operating characteristic curve (AUC).</p><p><strong>Results: </strong>A total of twenty-six candidate variables were included. The area under ROC curve of the RF model, BPNN model, and logistic regression model was 0.948, 0.921, and 0.866. Comparison of ROC curve AUC between logistic regression and RF model for predicting MACE risk showed a statistically significant difference (Z=2.278, <i>P</i>=0.023).</p><p><strong>Conclusion: </strong>The RF model showed good performance in predicting the risk of MACE in perimenopausal women providing a reference for the early identification of high-risk patients and the development of targeted intervention strategies.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"18 ","pages":"11-20"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721002/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction and Comparison of Machine Learning-Based Risk Prediction Models for Major Adverse Cardiovascular Events in Perimenopausal Women.\",\"authors\":\"Anjing Chen, Xinyue Chang, Xueling Bian, Fangxia Zhang, Shasha Ma, Xiaolin Chen\",\"doi\":\"10.2147/IJGM.S497416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Perimenopausal period is a period of physiological changes in women with signs of ovarian failure, including menopausal transition period and 1 year after menopause. Ovarian function declines in perimenopausal women and lower estrogen levels lead to changes in the function of various organs, which may lead to cardiovascular disease. Major adverse cardiovascular events (MACE) are the combination of clinical events including heart failure, myocardial infarction and other cardiovascular diseases. Therefore, this study explores the factors influencing the occurrence of MACE in perimenopausal women and establishes a prediction model for MACE risk factors using three algorithms, comparing their predictive performance.</p><p><strong>Patients and methods: </strong>A total of 411 perimenopausal women diagnosed with MACE at the Binzhou Medical University Hospital were randomly divided into a training set and a test set following a 7:3 ratio. According to the principle of 10 events per Variable, the training set sample size was sufficient. In the training set, Random Forest (RF) algorithm, backpropagation neural network (BPNN) and Logistic Regression (LR) were used to construct a MACE risk prediction model for perimenopausal women, and the test set was used to verify the model. The prediction performance of the model was evaluated in terms of accuracy, sensitivity, specificity, and area under the subject operating characteristic curve (AUC).</p><p><strong>Results: </strong>A total of twenty-six candidate variables were included. The area under ROC curve of the RF model, BPNN model, and logistic regression model was 0.948, 0.921, and 0.866. Comparison of ROC curve AUC between logistic regression and RF model for predicting MACE risk showed a statistically significant difference (Z=2.278, <i>P</i>=0.023).</p><p><strong>Conclusion: </strong>The RF model showed good performance in predicting the risk of MACE in perimenopausal women providing a reference for the early identification of high-risk patients and the development of targeted intervention strategies.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":\"18 \",\"pages\":\"11-20\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S497416\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S497416","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Construction and Comparison of Machine Learning-Based Risk Prediction Models for Major Adverse Cardiovascular Events in Perimenopausal Women.
Background: Perimenopausal period is a period of physiological changes in women with signs of ovarian failure, including menopausal transition period and 1 year after menopause. Ovarian function declines in perimenopausal women and lower estrogen levels lead to changes in the function of various organs, which may lead to cardiovascular disease. Major adverse cardiovascular events (MACE) are the combination of clinical events including heart failure, myocardial infarction and other cardiovascular diseases. Therefore, this study explores the factors influencing the occurrence of MACE in perimenopausal women and establishes a prediction model for MACE risk factors using three algorithms, comparing their predictive performance.
Patients and methods: A total of 411 perimenopausal women diagnosed with MACE at the Binzhou Medical University Hospital were randomly divided into a training set and a test set following a 7:3 ratio. According to the principle of 10 events per Variable, the training set sample size was sufficient. In the training set, Random Forest (RF) algorithm, backpropagation neural network (BPNN) and Logistic Regression (LR) were used to construct a MACE risk prediction model for perimenopausal women, and the test set was used to verify the model. The prediction performance of the model was evaluated in terms of accuracy, sensitivity, specificity, and area under the subject operating characteristic curve (AUC).
Results: A total of twenty-six candidate variables were included. The area under ROC curve of the RF model, BPNN model, and logistic regression model was 0.948, 0.921, and 0.866. Comparison of ROC curve AUC between logistic regression and RF model for predicting MACE risk showed a statistically significant difference (Z=2.278, P=0.023).
Conclusion: The RF model showed good performance in predicting the risk of MACE in perimenopausal women providing a reference for the early identification of high-risk patients and the development of targeted intervention strategies.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.