{"title":"比较生物和合成伤口基质中细胞与支架的相互作用。","authors":"Joon Pio Hong, Joanneke Maitz, Matthias Mörgelin","doi":"10.1111/iwj.70108","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g., cytokines, chemokines). In chronic wound environments, the balance in the molecular signatures of inflammatory mediators is usually impaired. Thus, we compared the ability of a collagen-based wound matrix against a synthetic wound matrix to attract fibroblasts and macrophages that deliver these signalling molecules. In particular, the balance between pro- and anti- inflammatory cytokine secretion was assessed. We found that the natural collagen-based matrix was the most efficient adhesive substrate to recruit and activate fibroblasts and macrophages on its surface. These cells secreted a variety of cytokines, and the natural biomaterial exhibited a more balanced secretion of pro- and anti-inflammatory mediators than the synthetic comparator. Thus, our study highlights the ability of native collagen matrices to modulate inflammatory mediator signatures in the wound bed, indicating that such devices may be beneficial for wound healing in the clinical setting.</p>","PeriodicalId":14451,"journal":{"name":"International Wound Journal","volume":"22 1","pages":"e70108"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of cell-scaffold interactions in a biological and a synthetic wound matrix.\",\"authors\":\"Joon Pio Hong, Joanneke Maitz, Matthias Mörgelin\",\"doi\":\"10.1111/iwj.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g., cytokines, chemokines). In chronic wound environments, the balance in the molecular signatures of inflammatory mediators is usually impaired. Thus, we compared the ability of a collagen-based wound matrix against a synthetic wound matrix to attract fibroblasts and macrophages that deliver these signalling molecules. In particular, the balance between pro- and anti- inflammatory cytokine secretion was assessed. We found that the natural collagen-based matrix was the most efficient adhesive substrate to recruit and activate fibroblasts and macrophages on its surface. These cells secreted a variety of cytokines, and the natural biomaterial exhibited a more balanced secretion of pro- and anti-inflammatory mediators than the synthetic comparator. Thus, our study highlights the ability of native collagen matrices to modulate inflammatory mediator signatures in the wound bed, indicating that such devices may be beneficial for wound healing in the clinical setting.</p>\",\"PeriodicalId\":14451,\"journal\":{\"name\":\"International Wound Journal\",\"volume\":\"22 1\",\"pages\":\"e70108\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Wound Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/iwj.70108\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Wound Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/iwj.70108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Comparison of cell-scaffold interactions in a biological and a synthetic wound matrix.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g., cytokines, chemokines). In chronic wound environments, the balance in the molecular signatures of inflammatory mediators is usually impaired. Thus, we compared the ability of a collagen-based wound matrix against a synthetic wound matrix to attract fibroblasts and macrophages that deliver these signalling molecules. In particular, the balance between pro- and anti- inflammatory cytokine secretion was assessed. We found that the natural collagen-based matrix was the most efficient adhesive substrate to recruit and activate fibroblasts and macrophages on its surface. These cells secreted a variety of cytokines, and the natural biomaterial exhibited a more balanced secretion of pro- and anti-inflammatory mediators than the synthetic comparator. Thus, our study highlights the ability of native collagen matrices to modulate inflammatory mediator signatures in the wound bed, indicating that such devices may be beneficial for wound healing in the clinical setting.
期刊介绍:
The Editors welcome papers on all aspects of prevention and treatment of wounds and associated conditions in the fields of surgery, dermatology, oncology, nursing, radiotherapy, physical therapy, occupational therapy and podiatry. The Journal accepts papers in the following categories:
- Research papers
- Review articles
- Clinical studies
- Letters
- News and Views: international perspectives, education initiatives, guidelines and different activities of groups and societies.
Calendar of events
The Editors are supported by a board of international experts and a panel of reviewers across a range of disciplines and specialties which ensures only the most current and relevant research is published.