{"title":"丁香酚醋酸酯对缺血性脑卒中的神经保护作用。","authors":"Liqiu Chen, Ran Zhang, Jing Xiao, Ying Liang, Zhen Lan, Yingao Fan, Xi Yu, Shengnan Xia, Haiyan Yang, Xinyu Bao, Hailan Meng, Yun Xu, Linjie Yu, Xiaolei Zhu","doi":"10.2147/JIR.S487482","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the neuroprotective effect of Eugenol Acetate (EA) on post-stroke neuroinflammation and investigate the underlying mechanisms.</p><p><strong>Methods: </strong>For in vitro experiments, primary microglia were pre-incubated with EA for 2 hours, followed by lipopolysaccharide (LPS) stimulation for 24 hours or Oxygen-Glucose Deprivation (OGD) treatment for 4 hours. Real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to examine the expression levels of inflammatory cytokines in primary microglia. The activation of NF-κB signaling pathway was evaluated by immunofluorescence staining and Western blot. For in vivo experiments, middle cerebral artery occlusion (MCAO) was constructed to mimic ischemic brain injury on 8-week-old male C57BL/6J mice. The mice were continuously injected intraperitoneally with EA or vehicle after MCAO. Neurobehavioral tests and TTC staining were conducted to estimate the neurological deficits and infarct area. Moreover, the white matter integrity after MCAO was observed via immunofluorescence staining.</p><p><strong>Results: </strong>EA significantly reduced the expression of pro-inflammatory cytokines in LPS or OGD treated primary microglia, and inhibited LPS-induced activation of the NF-κB signaling pathway. In addition, EA alleviated ischemic brain injury and improved neuromotor function of MCAO mice. Furthermore, long-term neurological deficits and white matter integrity were improved by EA treatment after MCAO.</p><p><strong>Conclusion: </strong>EA alleviated ischemic injury and restored white matter integrity in MCAO mice, which might be associated with the inhibition of NF-κB signaling pathway in microglia. Therefore, EA might be a promising candidate for the treatment of ischemic stroke.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"133-146"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720997/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Effects of Eugenol Acetate Against Ischemic Stroke.\",\"authors\":\"Liqiu Chen, Ran Zhang, Jing Xiao, Ying Liang, Zhen Lan, Yingao Fan, Xi Yu, Shengnan Xia, Haiyan Yang, Xinyu Bao, Hailan Meng, Yun Xu, Linjie Yu, Xiaolei Zhu\",\"doi\":\"10.2147/JIR.S487482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To explore the neuroprotective effect of Eugenol Acetate (EA) on post-stroke neuroinflammation and investigate the underlying mechanisms.</p><p><strong>Methods: </strong>For in vitro experiments, primary microglia were pre-incubated with EA for 2 hours, followed by lipopolysaccharide (LPS) stimulation for 24 hours or Oxygen-Glucose Deprivation (OGD) treatment for 4 hours. Real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to examine the expression levels of inflammatory cytokines in primary microglia. The activation of NF-κB signaling pathway was evaluated by immunofluorescence staining and Western blot. For in vivo experiments, middle cerebral artery occlusion (MCAO) was constructed to mimic ischemic brain injury on 8-week-old male C57BL/6J mice. The mice were continuously injected intraperitoneally with EA or vehicle after MCAO. Neurobehavioral tests and TTC staining were conducted to estimate the neurological deficits and infarct area. Moreover, the white matter integrity after MCAO was observed via immunofluorescence staining.</p><p><strong>Results: </strong>EA significantly reduced the expression of pro-inflammatory cytokines in LPS or OGD treated primary microglia, and inhibited LPS-induced activation of the NF-κB signaling pathway. In addition, EA alleviated ischemic brain injury and improved neuromotor function of MCAO mice. Furthermore, long-term neurological deficits and white matter integrity were improved by EA treatment after MCAO.</p><p><strong>Conclusion: </strong>EA alleviated ischemic injury and restored white matter integrity in MCAO mice, which might be associated with the inhibition of NF-κB signaling pathway in microglia. Therefore, EA might be a promising candidate for the treatment of ischemic stroke.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"18 \",\"pages\":\"133-146\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S487482\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S487482","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Neuroprotective Effects of Eugenol Acetate Against Ischemic Stroke.
Objective: To explore the neuroprotective effect of Eugenol Acetate (EA) on post-stroke neuroinflammation and investigate the underlying mechanisms.
Methods: For in vitro experiments, primary microglia were pre-incubated with EA for 2 hours, followed by lipopolysaccharide (LPS) stimulation for 24 hours or Oxygen-Glucose Deprivation (OGD) treatment for 4 hours. Real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to examine the expression levels of inflammatory cytokines in primary microglia. The activation of NF-κB signaling pathway was evaluated by immunofluorescence staining and Western blot. For in vivo experiments, middle cerebral artery occlusion (MCAO) was constructed to mimic ischemic brain injury on 8-week-old male C57BL/6J mice. The mice were continuously injected intraperitoneally with EA or vehicle after MCAO. Neurobehavioral tests and TTC staining were conducted to estimate the neurological deficits and infarct area. Moreover, the white matter integrity after MCAO was observed via immunofluorescence staining.
Results: EA significantly reduced the expression of pro-inflammatory cytokines in LPS or OGD treated primary microglia, and inhibited LPS-induced activation of the NF-κB signaling pathway. In addition, EA alleviated ischemic brain injury and improved neuromotor function of MCAO mice. Furthermore, long-term neurological deficits and white matter integrity were improved by EA treatment after MCAO.
Conclusion: EA alleviated ischemic injury and restored white matter integrity in MCAO mice, which might be associated with the inhibition of NF-κB signaling pathway in microglia. Therefore, EA might be a promising candidate for the treatment of ischemic stroke.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.