Dangdang Wang, Yanyu Pu, Xi Gao, Lihong Zeng, Hong Li
{"title":"原发性开角型青光眼中GNLY的潜在功能和因果关系:血源性蛋白质组、转录组的整合和实验验证。","authors":"Dangdang Wang, Yanyu Pu, Xi Gao, Lihong Zeng, Hong Li","doi":"10.2147/JIR.S497525","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.</p><p><strong>Methods: </strong>We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis.</p><p><strong>Results: </strong>PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (<i>P</i> <sub>SMR</sub> < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups.</p><p><strong>Conclusion: </strong>This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"367-380"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification.\",\"authors\":\"Dangdang Wang, Yanyu Pu, Xi Gao, Lihong Zeng, Hong Li\",\"doi\":\"10.2147/JIR.S497525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.</p><p><strong>Methods: </strong>We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis.</p><p><strong>Results: </strong>PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (<i>P</i> <sub>SMR</sub> < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups.</p><p><strong>Conclusion: </strong>This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"18 \",\"pages\":\"367-380\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S497525\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S497525","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification.
Purpose: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.
Methods: We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis.
Results: PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (PSMR < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups.
Conclusion: This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.