小檗碱改善戊四唑点燃大鼠癫痫发作的癫痫活动和心功能障碍:调节sigma1受体、Akt/eNOS信号和铁下垂。

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-04-01 Epub Date: 2025-01-10 DOI:10.1016/j.neuropharm.2025.110295
Shrouk M Basiouny, Hala F Zaki, Shimaa M Elshazly, Ahmed F Mohamed
{"title":"小檗碱改善戊四唑点燃大鼠癫痫发作的癫痫活动和心功能障碍:调节sigma1受体、Akt/eNOS信号和铁下垂。","authors":"Shrouk M Basiouny, Hala F Zaki, Shimaa M Elshazly, Ahmed F Mohamed","doi":"10.1016/j.neuropharm.2025.110295","DOIUrl":null,"url":null,"abstract":"<p><p>Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy. Male Wistar albino rats received PTZ (35 mg/kg) every other day alone, with BER, with phenytoin (PHT), with both BER and PHT and with both BER and an S1R blocker (NE-100) over 27 days. BER decreased seizure severity and improved hemodynamic parameters. Histopathological abnormalities were more pronounced in the PTZ, and blocker group than in other groups, in heart tissue. In cardiac tissue, BER enhanced the AKT/eNOS signaling pathway and mitigated ferroptosis by boosting the cystine/glutamate transporter/Glutathione/Glutathione Peroxidase 4 (XCT/GSH/GPX4) system and ferritin heavy chain-1 (FTH-1) expression, while reducing iron and Transferrin receptor protein 1 (TFR1) levels. Such effects were largely negated by NE-100 pretreatment. In conclusion, BER shows protective effects on cardiac dysfunction induced by the PTZ kindling model by acting as an S1R agonist and influencing the AKT/eNOS signaling pathway and ferroptosis.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110295"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.\",\"authors\":\"Shrouk M Basiouny, Hala F Zaki, Shimaa M Elshazly, Ahmed F Mohamed\",\"doi\":\"10.1016/j.neuropharm.2025.110295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy. Male Wistar albino rats received PTZ (35 mg/kg) every other day alone, with BER, with phenytoin (PHT), with both BER and PHT and with both BER and an S1R blocker (NE-100) over 27 days. BER decreased seizure severity and improved hemodynamic parameters. Histopathological abnormalities were more pronounced in the PTZ, and blocker group than in other groups, in heart tissue. In cardiac tissue, BER enhanced the AKT/eNOS signaling pathway and mitigated ferroptosis by boosting the cystine/glutamate transporter/Glutathione/Glutathione Peroxidase 4 (XCT/GSH/GPX4) system and ferritin heavy chain-1 (FTH-1) expression, while reducing iron and Transferrin receptor protein 1 (TFR1) levels. Such effects were largely negated by NE-100 pretreatment. In conclusion, BER shows protective effects on cardiac dysfunction induced by the PTZ kindling model by acting as an S1R agonist and influencing the AKT/eNOS signaling pathway and ferroptosis.</p>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\" \",\"pages\":\"110295\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuropharm.2025.110295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2025.110295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

癫痫会导致心功能障碍。多种途径促成了这一现象,其中伴侣-1受体(S1R)信号代表了癫痫和随后的心脏并发症之间异常的有希望的联系。本研究探讨了一种有前景的S1R激动剂小檗碱(Berberine, BER)在戊四氮唑(PTZ)点燃大鼠癫痫模型中治疗癫痫和相关心脏异常的潜力。雄性Wistar白化大鼠每隔一天单独给予PTZ (35 mg/kg),联合BER、苯妥英(PHT)、BER和PHT以及BER和S1R阻滞剂(NE-100),持续27天。BER降低了癫痫发作的严重程度,改善了血流动力学参数。在心脏组织中,PTZ和阻滞剂组的组织病理学异常比其他组更为明显。在心脏组织中,BER通过提高胱氨酸/谷氨酸转运体/谷胱甘肽/谷胱甘肽过氧化物酶4 (XCT/GSH/GPX4)系统和铁蛋白重链-1 (FTH-1)的表达,同时降低铁和转铁蛋白受体蛋白1 (TFR1)的水平,增强AKT/eNOS信号通路,减轻铁凋亡。经NE-100预处理后,这些作用在很大程度上被抵消。综上所述,BER通过作为S1R激动剂,影响AKT/eNOS信号通路和铁凋亡,对PTZ点燃模型引起的心功能障碍具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy. Male Wistar albino rats received PTZ (35 mg/kg) every other day alone, with BER, with phenytoin (PHT), with both BER and PHT and with both BER and an S1R blocker (NE-100) over 27 days. BER decreased seizure severity and improved hemodynamic parameters. Histopathological abnormalities were more pronounced in the PTZ, and blocker group than in other groups, in heart tissue. In cardiac tissue, BER enhanced the AKT/eNOS signaling pathway and mitigated ferroptosis by boosting the cystine/glutamate transporter/Glutathione/Glutathione Peroxidase 4 (XCT/GSH/GPX4) system and ferritin heavy chain-1 (FTH-1) expression, while reducing iron and Transferrin receptor protein 1 (TFR1) levels. Such effects were largely negated by NE-100 pretreatment. In conclusion, BER shows protective effects on cardiac dysfunction induced by the PTZ kindling model by acting as an S1R agonist and influencing the AKT/eNOS signaling pathway and ferroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles. The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew. Female Syrian hamster analyses of bremelanotide, a US FDA approved drug for the treatment of female hypoactive sexual desire disorder. Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1