Sara Kaaki, Alison Cartereau, Khalid Boussaine, Emiliane Taillebois, Steeve H Thany
{"title":"α4β2神经元烟碱乙酰胆碱受体的化学计量学决定了新烟碱类药物的药理学性质,以及最近引入的丁烯内酯和亚胺。","authors":"Sara Kaaki, Alison Cartereau, Khalid Boussaine, Emiliane Taillebois, Steeve H Thany","doi":"10.1016/j.neuro.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone. In this study, we injected Xenopus laevis oocytes with 1:10 and 10:1 α4:β2 subunit RNA ratios, in order to express the high (α4)<sub>2</sub>(β2)<sub>3</sub> and low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> nAChRs. Using the two-electrode voltage-clamp technique, we found that the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> nAChRs were activated by all tested insecticides, whereas the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> nAChR was only activated by ACh. Imidacloprid, sulfoxaflor and flupyradifurone confirmed their agonist effects by reducing the responses to the ACh EC<sub>80</sub> concentrations, for both low (α4)<sub>3</sub>(β2)<sub>2</sub> and high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> stoichiometries. Clothianidin only inhibited ACh responses of the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> stoichiometry. Mutation E226P in the α4 subunit of the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> receptors inhibits the agonist potency of imidacloprid and flupyradifurone, whereas mutation L273T (in the β2 subunit) in the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> nAChR leads to activation by all insecticides. Major agonist effects were found with the double mutation of the E226P in the α4 subunit, and the L273T in the β2 subunit of the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> stoichiometry.</p>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine.\",\"authors\":\"Sara Kaaki, Alison Cartereau, Khalid Boussaine, Emiliane Taillebois, Steeve H Thany\",\"doi\":\"10.1016/j.neuro.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone. In this study, we injected Xenopus laevis oocytes with 1:10 and 10:1 α4:β2 subunit RNA ratios, in order to express the high (α4)<sub>2</sub>(β2)<sub>3</sub> and low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> nAChRs. Using the two-electrode voltage-clamp technique, we found that the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> nAChRs were activated by all tested insecticides, whereas the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> nAChR was only activated by ACh. Imidacloprid, sulfoxaflor and flupyradifurone confirmed their agonist effects by reducing the responses to the ACh EC<sub>80</sub> concentrations, for both low (α4)<sub>3</sub>(β2)<sub>2</sub> and high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> stoichiometries. Clothianidin only inhibited ACh responses of the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> stoichiometry. Mutation E226P in the α4 subunit of the low sensitivity (α4)<sub>3</sub>(β2)<sub>2</sub> receptors inhibits the agonist potency of imidacloprid and flupyradifurone, whereas mutation L273T (in the β2 subunit) in the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> nAChR leads to activation by all insecticides. Major agonist effects were found with the double mutation of the E226P in the α4 subunit, and the L273T in the β2 subunit of the high sensitivity (α4)<sub>2</sub>(β2)<sub>3</sub> stoichiometry.</p>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuro.2025.01.001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuro.2025.01.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine.
Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone. In this study, we injected Xenopus laevis oocytes with 1:10 and 10:1 α4:β2 subunit RNA ratios, in order to express the high (α4)2(β2)3 and low sensitivity (α4)3(β2)2 nAChRs. Using the two-electrode voltage-clamp technique, we found that the low sensitivity (α4)3(β2)2 nAChRs were activated by all tested insecticides, whereas the high sensitivity (α4)2(β2)3 nAChR was only activated by ACh. Imidacloprid, sulfoxaflor and flupyradifurone confirmed their agonist effects by reducing the responses to the ACh EC80 concentrations, for both low (α4)3(β2)2 and high sensitivity (α4)2(β2)3 stoichiometries. Clothianidin only inhibited ACh responses of the low sensitivity (α4)3(β2)2 stoichiometry. Mutation E226P in the α4 subunit of the low sensitivity (α4)3(β2)2 receptors inhibits the agonist potency of imidacloprid and flupyradifurone, whereas mutation L273T (in the β2 subunit) in the high sensitivity (α4)2(β2)3 nAChR leads to activation by all insecticides. Major agonist effects were found with the double mutation of the E226P in the α4 subunit, and the L273T in the β2 subunit of the high sensitivity (α4)2(β2)3 stoichiometry.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.