Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang
{"title":"ICH-PRNet:基于联合注意相互作用机制的跨模式脑出血预后预测方法。","authors":"Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang","doi":"10.1016/j.neunet.2024.107096","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107096"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.\",\"authors\":\"Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang\",\"doi\":\"10.1016/j.neunet.2024.107096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"184 \",\"pages\":\"107096\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.107096\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107096","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.
Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.