{"title":"利用荧光HiBiT肽跟踪GPCR动力学的四色单分子成像系统。","authors":"Toshiki Yoda, Yasushi Sako, Asuka Inoue, Masataka Yanagawa","doi":"10.2142/biophysico.bppb-v21.0020","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 3","pages":"e210020"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718171/pdf/","citationCount":"0","resultStr":"{\"title\":\"Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.\",\"authors\":\"Toshiki Yoda, Yasushi Sako, Asuka Inoue, Masataka Yanagawa\",\"doi\":\"10.2142/biophysico.bppb-v21.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 3\",\"pages\":\"e210020\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718171/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.