基于路径的图神经网络在分布式流量工程中的鲁棒和弹性路由

Minghao Ye;Junjie Zhang;Zehua Guo;H. Jonathan Chao
{"title":"基于路径的图神经网络在分布式流量工程中的鲁棒和弹性路由","authors":"Minghao Ye;Junjie Zhang;Zehua Guo;H. Jonathan Chao","doi":"10.1109/JSAC.2025.3528815","DOIUrl":null,"url":null,"abstract":"Distributed Traffic Engineering (TE) aims to optimize network performance by generating individual routing strategies at each router without a global view of the network. A major challenge for these TE solutions is handling performance degradation caused by unexpected traffic fluctuations and unpredictable link failures. Recently, Machine Learning (ML) techniques have introduced new opportunities to enhance distributed TE. In this paper, we propose Path-Based Graph Neural Network (PathGNN), which leverages the emerging GNN architecture to quickly infer robust and resilient routing strategies in a distributed manner to accommodate unexpected network conditions. PathGNN adopts a novel path-link bipartite graph modeling approach to capture the dynamics of link resources shared by routing paths. It then performs efficient GNN message exchanges among routers to make adaptive local routing decisions for better load balancing. Additionally, PathGNN leverages Supervised Learning (SL) to directly learn from optimal routing strategies through efficient offline training. Evaluation results on four real-world network topologies demonstrate PathGNN’s strong generalization capability. Compared to state-of-the-art distributed TE solutions, PathGNN improves the load balancing performance by at least 24.4% with lower end-to-end delay under dynamic traffic scenarios, and also boosts performance by up to 35.3% under multiple link failures.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 2","pages":"422-436"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path-Based Graph Neural Network for Robust and Resilient Routing in Distributed Traffic Engineering\",\"authors\":\"Minghao Ye;Junjie Zhang;Zehua Guo;H. Jonathan Chao\",\"doi\":\"10.1109/JSAC.2025.3528815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Traffic Engineering (TE) aims to optimize network performance by generating individual routing strategies at each router without a global view of the network. A major challenge for these TE solutions is handling performance degradation caused by unexpected traffic fluctuations and unpredictable link failures. Recently, Machine Learning (ML) techniques have introduced new opportunities to enhance distributed TE. In this paper, we propose Path-Based Graph Neural Network (PathGNN), which leverages the emerging GNN architecture to quickly infer robust and resilient routing strategies in a distributed manner to accommodate unexpected network conditions. PathGNN adopts a novel path-link bipartite graph modeling approach to capture the dynamics of link resources shared by routing paths. It then performs efficient GNN message exchanges among routers to make adaptive local routing decisions for better load balancing. Additionally, PathGNN leverages Supervised Learning (SL) to directly learn from optimal routing strategies through efficient offline training. Evaluation results on four real-world network topologies demonstrate PathGNN’s strong generalization capability. Compared to state-of-the-art distributed TE solutions, PathGNN improves the load balancing performance by at least 24.4% with lower end-to-end delay under dynamic traffic scenarios, and also boosts performance by up to 35.3% under multiple link failures.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 2\",\"pages\":\"422-436\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10838541/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10838541/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path-Based Graph Neural Network for Robust and Resilient Routing in Distributed Traffic Engineering
Distributed Traffic Engineering (TE) aims to optimize network performance by generating individual routing strategies at each router without a global view of the network. A major challenge for these TE solutions is handling performance degradation caused by unexpected traffic fluctuations and unpredictable link failures. Recently, Machine Learning (ML) techniques have introduced new opportunities to enhance distributed TE. In this paper, we propose Path-Based Graph Neural Network (PathGNN), which leverages the emerging GNN architecture to quickly infer robust and resilient routing strategies in a distributed manner to accommodate unexpected network conditions. PathGNN adopts a novel path-link bipartite graph modeling approach to capture the dynamics of link resources shared by routing paths. It then performs efficient GNN message exchanges among routers to make adaptive local routing decisions for better load balancing. Additionally, PathGNN leverages Supervised Learning (SL) to directly learn from optimal routing strategies through efficient offline training. Evaluation results on four real-world network topologies demonstrate PathGNN’s strong generalization capability. Compared to state-of-the-art distributed TE solutions, PathGNN improves the load balancing performance by at least 24.4% with lower end-to-end delay under dynamic traffic scenarios, and also boosts performance by up to 35.3% under multiple link failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Communications Society Information Guest Editorial: Special Issue on Next Generation Advanced Transceiver Technologies—Part I IEEE Journal on Selected Areas in Communications Publication Information Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1