IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-01-13 DOI:10.1073/pnas.2421585122
Emily E. Meyer, Marcelina Martynek, Sabine Kastner, Margaret S. Livingstone, Michael J. Arcaro
{"title":"Expansion of a conserved architecture drives the evolution of the primate visual cortex","authors":"Emily E. Meyer, Marcelina Martynek, Sabine Kastner, Margaret S. Livingstone, Michael J. Arcaro","doi":"10.1073/pnas.2421585122","DOIUrl":null,"url":null,"abstract":"Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species. Here, we addressed this limitation by examining the expansion of the human visual cortex relative to macaques using a common functional architecture: retinotopy. Our findings revealed that human visual cortex expansion is primarily driven by increases in the surface area of a visual map architecture present in macaques rather than an increase in the number of individual areas. This expansion was not uniform, with higher-order areas, particularly in the parietal cortex, exhibiting the largest growth. Comparisons between neonate and adult humans revealed that these relative areal size differences were already established at birth. A meta-analysis of neuroimaging studies indicated that the most expanded areas are associated with advanced cognitive functions beyond visual processing. These results suggest that human perceptual and cognitive adaptations may be rooted in the expansion of evolutionarily conserved cortical architecture, with modifications even in the sensory cortex contributing to the broader cognitive functions characteristic of human behavior.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"42 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2421585122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类大脑进化的特点是与高级感知和认知功能相关的皮质区域不成比例地扩大。虽然这种扩张通常归因于新的专门脑区的出现,但进化中保守的大脑皮层区域的改变也与物种特有的行为有关。由于无法在物种间进行直接比较,区分这两种进化结果一直受到限制。在这里,我们利用共同的功能结构--视网膜视图--研究了人类视觉皮层相对于猕猴的扩展,从而解决了这一局限性。我们的研究结果表明,人类视觉皮层的扩展主要是由猕猴视觉地图结构表面积的增加驱动的,而不是单个区域数量的增加。这种扩张并不均匀,高阶区域,尤其是顶叶皮层,表现出最大的增长。对新生儿和成年人类进行比较后发现,这些相对的区域大小差异在出生时就已经形成。对神经影像学研究的荟萃分析表明,扩大最多的区域与视觉处理以外的高级认知功能有关。这些结果表明,人类感知和认知的适应性可能植根于进化保守的皮层结构的扩展,甚至感觉皮层的改变也有助于人类行为所特有的更广泛的认知功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expansion of a conserved architecture drives the evolution of the primate visual cortex
Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species. Here, we addressed this limitation by examining the expansion of the human visual cortex relative to macaques using a common functional architecture: retinotopy. Our findings revealed that human visual cortex expansion is primarily driven by increases in the surface area of a visual map architecture present in macaques rather than an increase in the number of individual areas. This expansion was not uniform, with higher-order areas, particularly in the parietal cortex, exhibiting the largest growth. Comparisons between neonate and adult humans revealed that these relative areal size differences were already established at birth. A meta-analysis of neuroimaging studies indicated that the most expanded areas are associated with advanced cognitive functions beyond visual processing. These results suggest that human perceptual and cognitive adaptations may be rooted in the expansion of evolutionarily conserved cortical architecture, with modifications even in the sensory cortex contributing to the broader cognitive functions characteristic of human behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Nestor et al., Future scientific innovation requires the transformative power of philanthropy. Correction for Cao et al., Circadian clock cryptochrome proteins regulate autoimmunity. Correction for He et al., Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Correction for Humbert et al., Functional SARS-CoV-2 cross-reactive CD4+ T cells established in early childhood decline with age. Correction for Wu et al., NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1