在层状双氢氧化物中分离和稳定活性铜物种,以提高电催化二氧化碳还原为甲烷的能力

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2025-01-13 DOI:10.1016/j.jcat.2025.115959
Mingzhu Yue, Wenfu Xie, Ziyi Zhong, Min Li, Tianyu Zhang, Mingfei Shao, Hao Li, Qiang Wang
{"title":"在层状双氢氧化物中分离和稳定活性铜物种,以提高电催化二氧化碳还原为甲烷的能力","authors":"Mingzhu Yue, Wenfu Xie, Ziyi Zhong, Min Li, Tianyu Zhang, Mingfei Shao, Hao Li, Qiang Wang","doi":"10.1016/j.jcat.2025.115959","DOIUrl":null,"url":null,"abstract":"Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to CH<sub>4</sub> presents an effective solution to environmental and energy challenges. Catalysts featuring monodispersed Cu sites can suppress the dimerization of *CO intermediate, which makes them promising candidates for achieving high selectivity in the deep reduction of CO<sub>2</sub> to CH<sub>4</sub>. However, most Cu-based catalysts inevitably undergo restructuring during the reaction, which can alter the CO<sub>2</sub> reduction pathway and result in decreased performance. In this study, a series of Cu-based layered double hydroxides (LDHs) with stable monodispersed Cu sites were developed via atom isolation strategy. Among them, the CuMgAl-LDH catalyst with the monodispersed Cu sites achieved a Faradaic efficiency (FE) of 58.9 % for CO<sub>2</sub> reduction to CH<sub>4</sub> at a current density of 300 mA cm<sup>−2</sup> in a flow cell. In contrast, the CuAl-LDH catalyst without Mg doping showed a FE of 40.5 % for CO<sub>2</sub> reduction to C<sub>2</sub>H<sub>4</sub>. The results indicate that Mg atoms can inhibit the reconstruction process of CuMgAl-LDH during working conditions, preventing the aggregation of Cu atoms, thereby maintaining a high dispersion of Cu atoms. Additionally, a pulse electrolysis regulation strategy was employed to further enhance the selectivity and stability of CuMgAl-LDH, achieving a FE of 71.6 % for CO<sub>2</sub> reduction to CH<sub>4</sub>, with stability maintained for over 13 h. The results present a useful case for studying catalyst reconstruction and improving CO<sub>2</sub> reduction performance.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"29 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolating and stabilizing active copper species in layered double hydroxide to enhance electrocatalytic CO2 reduction to CH4\",\"authors\":\"Mingzhu Yue, Wenfu Xie, Ziyi Zhong, Min Li, Tianyu Zhang, Mingfei Shao, Hao Li, Qiang Wang\",\"doi\":\"10.1016/j.jcat.2025.115959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to CH<sub>4</sub> presents an effective solution to environmental and energy challenges. Catalysts featuring monodispersed Cu sites can suppress the dimerization of *CO intermediate, which makes them promising candidates for achieving high selectivity in the deep reduction of CO<sub>2</sub> to CH<sub>4</sub>. However, most Cu-based catalysts inevitably undergo restructuring during the reaction, which can alter the CO<sub>2</sub> reduction pathway and result in decreased performance. In this study, a series of Cu-based layered double hydroxides (LDHs) with stable monodispersed Cu sites were developed via atom isolation strategy. Among them, the CuMgAl-LDH catalyst with the monodispersed Cu sites achieved a Faradaic efficiency (FE) of 58.9 % for CO<sub>2</sub> reduction to CH<sub>4</sub> at a current density of 300 mA cm<sup>−2</sup> in a flow cell. In contrast, the CuAl-LDH catalyst without Mg doping showed a FE of 40.5 % for CO<sub>2</sub> reduction to C<sub>2</sub>H<sub>4</sub>. The results indicate that Mg atoms can inhibit the reconstruction process of CuMgAl-LDH during working conditions, preventing the aggregation of Cu atoms, thereby maintaining a high dispersion of Cu atoms. Additionally, a pulse electrolysis regulation strategy was employed to further enhance the selectivity and stability of CuMgAl-LDH, achieving a FE of 71.6 % for CO<sub>2</sub> reduction to CH<sub>4</sub>, with stability maintained for over 13 h. The results present a useful case for studying catalyst reconstruction and improving CO<sub>2</sub> reduction performance.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2025.115959\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.115959","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolating and stabilizing active copper species in layered double hydroxide to enhance electrocatalytic CO2 reduction to CH4
Electrocatalytic CO2 reduction reaction (CO2RR) to CH4 presents an effective solution to environmental and energy challenges. Catalysts featuring monodispersed Cu sites can suppress the dimerization of *CO intermediate, which makes them promising candidates for achieving high selectivity in the deep reduction of CO2 to CH4. However, most Cu-based catalysts inevitably undergo restructuring during the reaction, which can alter the CO2 reduction pathway and result in decreased performance. In this study, a series of Cu-based layered double hydroxides (LDHs) with stable monodispersed Cu sites were developed via atom isolation strategy. Among them, the CuMgAl-LDH catalyst with the monodispersed Cu sites achieved a Faradaic efficiency (FE) of 58.9 % for CO2 reduction to CH4 at a current density of 300 mA cm−2 in a flow cell. In contrast, the CuAl-LDH catalyst without Mg doping showed a FE of 40.5 % for CO2 reduction to C2H4. The results indicate that Mg atoms can inhibit the reconstruction process of CuMgAl-LDH during working conditions, preventing the aggregation of Cu atoms, thereby maintaining a high dispersion of Cu atoms. Additionally, a pulse electrolysis regulation strategy was employed to further enhance the selectivity and stability of CuMgAl-LDH, achieving a FE of 71.6 % for CO2 reduction to CH4, with stability maintained for over 13 h. The results present a useful case for studying catalyst reconstruction and improving CO2 reduction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Characterization and theoretical calculations as powerful compensators for kinetics in the study of heterogeneous catalytic mechanisms on esterifying carboxylic acid Corrigendum to “Identifying a superior Ptδ+ species for the hydrogen-borrowing amination of alcohol at low temperature” [J. Catal. 432 (2024) 115407] Corrigendum to “Heterostructured Ti-MOF/g-C3N4 driven light assisted reductive carboxylation of aryl aldehydes with CO2 under ambient conditions” [J. Catal. 417 (2023) 116–128] Highly selective synthesis of tetramethylbenzene from CO2 hydrogenation over ZnZrO/modified-ZSM-11 tandem catalyst Insights into effects of zeolite framework topology on the cross aldol reaction of benzaldehyde with 3-Pentanone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1