{"title":"LI-GS:高斯溅射与激光雷达结合用于精确的大规模重建","authors":"Changjian Jiang;Ruilan Gao;Kele Shao;Yue Wang;Rong Xiong;Yu Zhang","doi":"10.1109/LRA.2024.3522846","DOIUrl":null,"url":null,"abstract":"Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1864-1871"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LI-GS: Gaussian Splatting With LiDAR Incorporated for Accurate Large-Scale Reconstruction\",\"authors\":\"Changjian Jiang;Ruilan Gao;Kele Shao;Yue Wang;Rong Xiong;Yu Zhang\",\"doi\":\"10.1109/LRA.2024.3522846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1864-1871\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816486/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816486/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
LI-GS: Gaussian Splatting With LiDAR Incorporated for Accurate Large-Scale Reconstruction
Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.