LI-GS:高斯溅射与激光雷达结合用于精确的大规模重建

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-26 DOI:10.1109/LRA.2024.3522846
Changjian Jiang;Ruilan Gao;Kele Shao;Yue Wang;Rong Xiong;Yu Zhang
{"title":"LI-GS:高斯溅射与激光雷达结合用于精确的大规模重建","authors":"Changjian Jiang;Ruilan Gao;Kele Shao;Yue Wang;Rong Xiong;Yu Zhang","doi":"10.1109/LRA.2024.3522846","DOIUrl":null,"url":null,"abstract":"Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1864-1871"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LI-GS: Gaussian Splatting With LiDAR Incorporated for Accurate Large-Scale Reconstruction\",\"authors\":\"Changjian Jiang;Ruilan Gao;Kele Shao;Yue Wang;Rong Xiong;Yu Zhang\",\"doi\":\"10.1109/LRA.2024.3522846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1864-1871\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816486/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816486/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

大规模三维重建在机器人领域至关重要,而三维高斯拼接(3DGS)在实现精确对象级重建方面的潜力已得到证实。然而,在室外和无边界场景中确保几何精度仍然是一项重大挑战。本研究介绍了一种结合了激光雷达和高斯拼接技术的重建系统--LI-GS,以提高大尺度场景中的几何精度。采用二维高斯曲面作为地图表示,以增强曲面对齐。此外,还提出了一种新颖的建模方法,将激光雷达点云转换为平面约束多模态高斯混合模型(GMM)。在初始化和优化阶段都使用了 GMM,以确保对整个场景进行充分、持续的监督,同时降低过度拟合的风险。此外,GMMs 还被用于网格提取,以消除伪影并提高整体几何质量。实验证明,在大规模三维重建中,我们的方法优于最先进的方法,与基于激光雷达的方法和基于高斯的方法相比,精度分别提高了 52.6% 和 68.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LI-GS: Gaussian Splatting With LiDAR Incorporated for Accurate Large-Scale Reconstruction
Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1