{"title":"异常驾驶行为的微观模型:具有可定制安全水平的二维随机公式","authors":"HongSheng Qi","doi":"10.1109/TITS.2024.3485668","DOIUrl":null,"url":null,"abstract":"Microscopic traffic models serve as indispensable tools in tasks such as constructing test scenarios for autonomous vehicles (AVs), predicting trajectories, and analyzing traffic flow dynamics. However, a significant proportion of these models rely on assumptions of normal behaviors. Yet, the validity of these assumptions is dubious given the heterogeneous nature of traffic flow and existence of abnormal driving behaviors. These limitations impede the efficacy of conventional microscopic models in crucial tasks like constructing AV test scenarios with specified risk levels, analyzing abnormal behaviors, etc. To address these challenges, this study contributes by proposing a model tailored to accommodate two-dimensional abnormal driving behaviors in microscopic traffic framework. The proposed approach have the following innovations: 1) it incorporates assumptions concerning abnormal behaviors in both the longitudinal and lateral dimensions; 2) abnormality at each dimension is captured by a combination of certain terms; 3) stochastic control barrier method is applied to customize the risk levels of the resulting traffic flow dynamics. Additionally, we present a method for retrieving vehicular maneuver information, enabling the extraction of detailed vehicle body gestures and driver control inputs, which would benefit the analysis of abnormal behavior. Our findings demonstrate that the proposed model yields longitudinal and lateral dynamics consistent with empirical observations, and various abnormal behavior patterns can be simulated.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 1","pages":"1163-1176"},"PeriodicalIF":7.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Modeling of Abnormal Driving Behavior: A Two-Dimensional Stochastic Formulation with Customizable Safety Levels\",\"authors\":\"HongSheng Qi\",\"doi\":\"10.1109/TITS.2024.3485668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscopic traffic models serve as indispensable tools in tasks such as constructing test scenarios for autonomous vehicles (AVs), predicting trajectories, and analyzing traffic flow dynamics. However, a significant proportion of these models rely on assumptions of normal behaviors. Yet, the validity of these assumptions is dubious given the heterogeneous nature of traffic flow and existence of abnormal driving behaviors. These limitations impede the efficacy of conventional microscopic models in crucial tasks like constructing AV test scenarios with specified risk levels, analyzing abnormal behaviors, etc. To address these challenges, this study contributes by proposing a model tailored to accommodate two-dimensional abnormal driving behaviors in microscopic traffic framework. The proposed approach have the following innovations: 1) it incorporates assumptions concerning abnormal behaviors in both the longitudinal and lateral dimensions; 2) abnormality at each dimension is captured by a combination of certain terms; 3) stochastic control barrier method is applied to customize the risk levels of the resulting traffic flow dynamics. Additionally, we present a method for retrieving vehicular maneuver information, enabling the extraction of detailed vehicle body gestures and driver control inputs, which would benefit the analysis of abnormal behavior. Our findings demonstrate that the proposed model yields longitudinal and lateral dynamics consistent with empirical observations, and various abnormal behavior patterns can be simulated.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 1\",\"pages\":\"1163-1176\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10762886/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10762886/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Microscopic Modeling of Abnormal Driving Behavior: A Two-Dimensional Stochastic Formulation with Customizable Safety Levels
Microscopic traffic models serve as indispensable tools in tasks such as constructing test scenarios for autonomous vehicles (AVs), predicting trajectories, and analyzing traffic flow dynamics. However, a significant proportion of these models rely on assumptions of normal behaviors. Yet, the validity of these assumptions is dubious given the heterogeneous nature of traffic flow and existence of abnormal driving behaviors. These limitations impede the efficacy of conventional microscopic models in crucial tasks like constructing AV test scenarios with specified risk levels, analyzing abnormal behaviors, etc. To address these challenges, this study contributes by proposing a model tailored to accommodate two-dimensional abnormal driving behaviors in microscopic traffic framework. The proposed approach have the following innovations: 1) it incorporates assumptions concerning abnormal behaviors in both the longitudinal and lateral dimensions; 2) abnormality at each dimension is captured by a combination of certain terms; 3) stochastic control barrier method is applied to customize the risk levels of the resulting traffic flow dynamics. Additionally, we present a method for retrieving vehicular maneuver information, enabling the extraction of detailed vehicle body gestures and driver control inputs, which would benefit the analysis of abnormal behavior. Our findings demonstrate that the proposed model yields longitudinal and lateral dynamics consistent with empirical observations, and various abnormal behavior patterns can be simulated.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.