metultrasonic:利用定向嵌入声信号推进机器人定位

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-01 DOI:10.1109/LRA.2024.3524903
Junling Wang;Zhenlin An;Yi Guo
{"title":"metultrasonic:利用定向嵌入声信号推进机器人定位","authors":"Junling Wang;Zhenlin An;Yi Guo","doi":"10.1109/LRA.2024.3524903","DOIUrl":null,"url":null,"abstract":"Indoor positioning in environments where GPS cannot be used is a fundamental technology for robot navigation and human-robot interaction. However, existing vision-based localization systems cannot work in low-visibility environments, and existing wireless or acoustic localization systems require specific transceivers, making them expensive and power-intensive — particularly challenging for microrobots. This letter proposes a new metasurface-assisted ultrasound positioning system. The key idea is to use a low-cost passive acoustic metasurface to transfer any speaker into a directional sound source, with the acoustic spectrum varying based on direction. This allows any microrobot with a simple, low-cost microphone to capture such modified sound to identify the direction of the sound source. We develop a lightweight convolutional neural network-based localization algorithm that can be efficiently deployed on low-power microcontrollers. We evaluate our system in a large complex office. It can achieve a direction estimation accuracy of 7.26<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>, improving by 42.2% compared to systems without the metasurface and matching the performance of a 4-microphone array, with a localization accuracy of 0.35 m.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1704-1711"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetaSonic: Advancing Robot Localization With Directional Embedded Acoustic Signals\",\"authors\":\"Junling Wang;Zhenlin An;Yi Guo\",\"doi\":\"10.1109/LRA.2024.3524903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor positioning in environments where GPS cannot be used is a fundamental technology for robot navigation and human-robot interaction. However, existing vision-based localization systems cannot work in low-visibility environments, and existing wireless or acoustic localization systems require specific transceivers, making them expensive and power-intensive — particularly challenging for microrobots. This letter proposes a new metasurface-assisted ultrasound positioning system. The key idea is to use a low-cost passive acoustic metasurface to transfer any speaker into a directional sound source, with the acoustic spectrum varying based on direction. This allows any microrobot with a simple, low-cost microphone to capture such modified sound to identify the direction of the sound source. We develop a lightweight convolutional neural network-based localization algorithm that can be efficiently deployed on low-power microcontrollers. We evaluate our system in a large complex office. It can achieve a direction estimation accuracy of 7.26<inline-formula><tex-math>$^\\\\circ$</tex-math></inline-formula>, improving by 42.2% compared to systems without the metasurface and matching the performance of a 4-microphone array, with a localization accuracy of 0.35 m.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1704-1711\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819639/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819639/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在无法使用GPS的环境下进行室内定位是机器人导航和人机交互的基础技术。然而,现有的基于视觉的定位系统不能在低能见度环境中工作,现有的无线或声学定位系统需要特定的收发器,这使得它们昂贵且功耗高——对微型机器人来说尤其具有挑战性。本文提出了一种新的超表面辅助超声定位系统。关键思想是使用低成本的被动声学超表面将任何扬声器转换为定向声源,声谱根据方向变化。这使得任何微型机器人都可以用一个简单、低成本的麦克风捕捉到这种经过修改的声音,从而识别声源的方向。我们开发了一种轻量级的基于卷积神经网络的定位算法,可以有效地部署在低功耗微控制器上。我们在一个大而复杂的办公室里评估我们的系统。该系统的方向估计精度为7.26$^\circ$,与没有超表面的系统相比提高了42.2%,定位精度为0.35 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetaSonic: Advancing Robot Localization With Directional Embedded Acoustic Signals
Indoor positioning in environments where GPS cannot be used is a fundamental technology for robot navigation and human-robot interaction. However, existing vision-based localization systems cannot work in low-visibility environments, and existing wireless or acoustic localization systems require specific transceivers, making them expensive and power-intensive — particularly challenging for microrobots. This letter proposes a new metasurface-assisted ultrasound positioning system. The key idea is to use a low-cost passive acoustic metasurface to transfer any speaker into a directional sound source, with the acoustic spectrum varying based on direction. This allows any microrobot with a simple, low-cost microphone to capture such modified sound to identify the direction of the sound source. We develop a lightweight convolutional neural network-based localization algorithm that can be efficiently deployed on low-power microcontrollers. We evaluate our system in a large complex office. It can achieve a direction estimation accuracy of 7.26$^\circ$, improving by 42.2% compared to systems without the metasurface and matching the performance of a 4-microphone array, with a localization accuracy of 0.35 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1