Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan
{"title":"机器人姿态伺服的最大允许TCF校准误差","authors":"Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan","doi":"10.1109/LRA.2024.3522840","DOIUrl":null,"url":null,"abstract":"Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1744-1751"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Allowable TCF Calibration Error for Robotic Pose Servoing\",\"authors\":\"Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan\",\"doi\":\"10.1109/LRA.2024.3522840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1744-1751\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816038/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816038/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Maximum Allowable TCF Calibration Error for Robotic Pose Servoing
Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.