机器人姿态伺服的最大允许TCF校准误差

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-25 DOI:10.1109/LRA.2024.3522840
Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan
{"title":"机器人姿态伺服的最大允许TCF校准误差","authors":"Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan","doi":"10.1109/LRA.2024.3522840","DOIUrl":null,"url":null,"abstract":"Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1744-1751"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Allowable TCF Calibration Error for Robotic Pose Servoing\",\"authors\":\"Jun Hou;Shiyu Xing;Yunkai Ma;Fengshui Jing;Min Tan\",\"doi\":\"10.1109/LRA.2024.3522840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1744-1751\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816038/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816038/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

机器人姿态伺服的目的是将机器人末端执行器移动到目标姿态。闭环伺服系统可以容忍较小的TCF(刀具控制架)校准误差,并通过多次位姿测量和位姿调整准确地达到目标位姿。然而,最大允许TCF校准误差仍然是一个悬而未决的问题。本文论证了机器人位姿伺服的必要条件是TCF标定误差角小于60°,且对TCF标定误差的平移分量没有限制。其次,提出了一种改进的位姿伺服方法,解决了TCF误差大与机器人工作空间有限之间的冲突。该方法引入了一个比例因子来限制机器人工作空间内的调整范围,确保了更大的鲁棒性。最后,选择机器人辅助舱室对接作为实验验证案例。仿真和物理实验验证了TCF标定的最大允许误差。对比实验验证了改进位姿伺服方法的鲁棒性,在TCF标定误差较大的情况下实现了座舱对接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Allowable TCF Calibration Error for Robotic Pose Servoing
Robotic pose servoing aims to move the robot end-effector to the target pose. Closed-loop servo systems can tolerate a small TCF (tool control frame) calibration error and accurately reach the target pose through multiple pose measurements and pose adjustments. However, the maximum allowable TCF calibration error remains an open question. This paper demonstrates that the necessary condition for robotic pose servoing is a TCF calibration error angle of less than 60 degrees, with no limit on the translational component of the TCF calibration error. Next, an improved pose servoing method is proposed to address the conflict between the large TCF error and the limited robot workspace. This method introduces a scaling factor to limit the adjustment range within the robot workspace, ensuring greater robustness. Finally, robot-assisted cabin docking is selected as an experimental validation case. Simulation and physical experiments validate the maximum allowable TCF calibration error. Comparative experiments confirm the robustness of the improved pose servoing method, achieving cabin docking despite significant TCF calibration errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1